
Janis

Michael Franklin, Richard Lupat

Nov 19, 2021

Contents

1 Introduction 3

2 Toolbox 5

3 Support 7

4 Contents 9

5 Indices and tables 141

Index 143

i

ii

Janis

Note: This project is work-in-progress and is provided as-is without warranty of any kind. There may be breaking
changes committed to this repository without notice.

Janis is a framework creating specialised, simple workflow definitions that are then transpiled to Common Workflow
Language or Workflow Definition Language.

It was developed as part of the Portable Pipelines Project, a collaboration between:

• Melbourne Bioinformatics (University of Melbourne)

• Peter MacCallum Cancer Centre

• Walter and Eliza Hall Institute of Medical Research (WEHI).

Contents 1

https://github.com/PMCC-BioinformaticsCore/janis
https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://janis.readthedocs.io/en/latest/?badge=latest)
https://pypi.org/project/janis-pipelines/
https://codecov.io/gh/PMCC-BioinformaticsCore/janis
https://gitter.im/janis-pipelines/community
https://www.melbournebioinformatics.org.au/
https://www.petermac.org/
https://www.wehi.edu.au/

Janis

2 Contents

CHAPTER 1

Introduction

Janis is a framework creating specialised, simple workflow definitions that are then transpiled to Common Workflow
Language or Workflow Definition Language.

Janis requires a Python installation > 3.6, and can be installed through PIP project page by running:

pip3 install janis-pipelines

There are two ways to use Janis:

• Build workflows (and translate to CWL (v1.2) / WDL (version development) / Nextflow (in-progress))

• Run tools or workflows with CWLTool, Cromwell, or Nextflow (in progress)

1.1 Example Workflow

write the workflow to `helloworld.py`
cat <<EOT >> helloworld.py
import janis as j
from janis_unix.tools import Echo

w = j.WorkflowBuilder("hello_world")

w.input("input_to_print", j.String)
w.step("echo", Echo(inp=w.input_to_print))
w.output("echo_out", source=w.echo.out)
EOT

Translate workflow to WDL
janis translate helloworld.py wdl

Run the workflow
janis run -o helloworld-tutorial helloworld.py --input_to_print "Hello, World!"

(continues on next page)

3

https://pypi.org/project/janis-pipelines/

Janis

(continued from previous page)

See your output
cat helloworld-tutorial/echo_out
Hello, World!

1.2 How to use Janis

• Tutorial 0 - Introduction to Janis

• Tutorial 1 - Building a workflow

• Tutorial 2 - Wrapping a new tool

1.3 Workshops

In addition, there are fully self-guided workshops that more broadly go through the functionality of Janis:

• Workshop 1

• Workshop 2

1.4 Examples

Sometimes it’s easier to learn by examples, here are a few hand picked examples:

• Samtools View (Docs)

• WGS Germline pipeline (GATK Only) (Docs)

4 Chapter 1. Introduction

https://janis.readthedocs.io/en/latest/tutorials/tutorial0.html
https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html
https://janis.readthedocs.io/en/latest/tutorials/tutorial2.html
https://github.com/PMCC-BioinformaticsCore/janis-workshops/tree/master/workshop1
https://github.com/PMCC-BioinformaticsCore/janis-workshops/tree/master/workshop2
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/blob/master/janis_bioinformatics/tools/samtools/view/base.py
https://janis.readthedocs.io/en/latest/tools/bioinformatics/samtools/samtoolsview.html
https://github.com/PMCC-BioinformaticsCore/janis-pipelines/blob/master/janis_pipelines/wgs_germline_gatk/wgsgermlinegatk.py
https://janis.readthedocs.io/en/latest/pipelines/wgsgermlinegatk.html

CHAPTER 2

Toolbox

There are two toolboxes currently available on Janis:

• Unix <https://github.com/PMCC-BioinformaticsCore/janis-unix>‘__(‘list of tools)

• Bioinformatics <https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics>‘__(‘list of tools)

2.1 References

Through conference or talks, this project has been referenced by the following titles:

• Walter and Eliza Hall Institute Talk (WEHI) 2019: Portable Pipelines Project: Developing reproducible bioin-
formatics pipelines with standardised workflow languages

• Bioinformatics Open Source Conference (BOSC) 2019: Janis: an open source tool to machine generate type-
safe CWL and WDL workflows

• Victorian Cancer Bioinformatics Symposium (VCBS) 2019: Developing portable variant calling pipelines with
Janis

• GIW / ABACBS 2019: Janis: A Python framework for Portable Pipelines

• Australian BioCommons, December 2019: Portable pipelines: build once and run everywhere with Janis

5

https://janis.readthedocs.io/en/latest/tools/bioinformatics/index.html
https://janis.readthedocs.io/en/latest/tools/unix/index.html

Janis

6 Chapter 2. Toolbox

CHAPTER 3

Support

To get help with Janis, please ask a question on Gitter or raise an issue on GitHub.

If you find an issue with the tool definitions, please see the relevant issue page:

• Pipeline-bioinformatics

This project is work-in-progress and is still in developments. Although we welcome contributions, due to the immature
state of this project we recommend raising issues through the Github issues page for Pipeline related issues.

Information about the project structure and more on contributing can be found within the documentation.

7

https://gitter.im/janis-pipelines/community
https://github.com/PMCC-BioinformaticsCore/janis/issues
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/issues
https://github.com/PMCC-BioinformaticsCore/janis/issues

Janis

8 Chapter 3. Support

CHAPTER 4

Contents

4.1 About

This project was produced as part of the Portable Pipelines Project in partnership with:

• Melbourne Bioinformatics (University of Melbourne)

• Peter MacCallum Cancer Centre

• Walter and Eliza Hall Institute of Medical Research (WEHI)

4.1.1 Motivations

Given the awesome list of pipeline frameworks, languages and engines, why create another framework to generate
workflow languages?

That’s a great question, and it’s a little complicated. Our project goals are to have a portable workflow specification,
that is reproducible across many different compute platforms. And instead of backing one technology, we thought it
would be more powerful to create a technology that can utilise the community’s work.

Some additional benefits we get by writing a generic framework is we sanity check connections and also add types
that exist within certain domains. For example within the bioinformatics tools, there’s a BamBai type that represents
an indexed .bam (+ .bai) file. With this framework, we don’t need to worry about pesky secondary files, or the
complications that come when passing them around in WDL either, this framework can take care of that.

4.1.2 Assistant

As part of the Portable Pipelines Project, we produced an execution assistant called janis-assistant. Its purpose
is to run workflows written in Janis, track the progress and report the results back in a robust way.

9

https://www.melbournebioinformatics.org.au/
https://www.petermac.org/
https://www.wehi.edu.au//
https://github.com/pditommaso/awesome-pipeline/

Janis

4.1.3 Related project links:

build docs pypi codecov
Janis Docs only
Janis core See Janis
Janis bioinformatics See Janis
Janis unix See Janis
Janis assistant See Janis

4.2 Pipeline concepts

This page is under construction

4.2.1 Introduction

In this guide, we’ll gently introduce Workflows and the terminology around it. More specifically, we’ll discuss
Pipelines in the realm of computational analysis.

4.2.2 Workflows

Before writing pipelines, it’s useful to have some background knowledge of what a Workflow is. Simply put:

A workflow is a series of steps that are joined to each other.

A diagram is great way to get an intuitive understanding of what a workflow is, for example to bake Chocolate chip
cookies, we can refer to the following workflow:

There are 8 steps to baking (and eating) a chocolate chip cookie, each step represented by a box. The arrows represent
the dependencies between the steps (what must be completed before the step can be started). For example, to beat the
butter and the eggs, we must have acquired the ingredients. Or to place the rolled cookie balls onto the tray,

we must have lined the 2 baking trays and mixed in the flour and chocolate.

We easily see how dependencies are represented in a workflow, and given enough resources, some of these tasks could
be completed at the same time. For example, we can preheat the oven while we’re preparing the cookie dough.

We’ll come back to this example a few times over the course of this introduction.

10 Chapter 4. Contents

https://github.com/PMCC-BioinformaticsCore/janis
https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://janis.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/janis-pipelines
https://github.com/PMCC-BioinformaticsCore/janis-core
https://travis-ci.org/PMCC-BioinformaticsCore/janis-core
https://badge.fury.io/py/janis-pipelines.core
https://codecov.io/gh/PMCC-BioinformaticsCore/janis-core
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics
https://travis-ci.org/PMCC-BioinformaticsCore/janis-bioinformatics
https://badge.fury.io/py/janis-pipelines.bioinformatics
https://github.com/PMCC-BioinformaticsCore/janis-unix
https://travis-ci.org/PMCC-BioinformaticsCore/janis-unix
https://badge.fury.io/py/janis-pipelines.unix
https://github.com/PMCC-BioinformaticsCore/janis-assistant
https://travis-ci.org/PMCC-BioinformaticsCore/janis-runner
https://badge.fury.io/py/janis-pipelines.runner
https://www.taste.com.au/recipes/chocolate-chip-cookies-2/1bfaa0e6-13b4-489d-bbd8-1cc5caf1fa32/
https://www.taste.com.au/recipes/chocolate-chip-cookies-2/1bfaa0e6-13b4-489d-bbd8-1cc5caf1fa32/

Janis

4.2.3 Computational Pipelines

Computational analysis involves performing a number of processing tasks to transform some input data into a pro-
cessed output. By stringing a number of these processing tasks together in a specific order, you get a pipeline.

Now, we can write simple shell script to perform a number of tasks, and this might be the way to go for simple on-
off workflows. However, by spending some time to construct a pipeline, we can take advantage of some powerful
computing concepts.

1. Simultaneous Job processing

In our cookie example, we expect some of the tasks to be asynchronous (they can be performed at
the same time). This is especially useful for long running tasks such as preheating the oven. If we
were to script a simple (synchronous) shell script, we would have to wait for the oven to preheat to
continue our baking, however a workflow engine can recognise these dependencies and run a number
of these jobs at once.

2. Portability

Additionally, shell scripts tend to be written in an explicit and non-portable way. For example you
may exactly reference the location of the program you want to run which means you’d likely need to
rewrite the script.

3. Fault tolerance and rerunning

If one of the programs does not return correctly, your shell script may not correctly recognise this and
continue, potentially costing your hours or days of computational time. And then when you re-run,
you’ll have to rerun the entire script, or modify your script to run only the failed components.

In a workflow engine, it will automatically detect non-zero exit codes (errors), and will terminate
execution of the program. Additionally, some engines are clever enough to recognise that you’ve
entered inputs that’s it’s seen before, and can automatically start from the fail point.

By using Janis, we bring another set of powerful analysis tools to the table, including tests for each tool, support for
transpiling to multiple commonly supported languages and type checking on all connections between tools.

4.2.4 Workflow terminology

Let’s start to break down some of the terminology we’ve used to represent workflows.

4.2.5 Inputs and Outputs

We’ll split the inputs / outputs in two ways:

1. Step based:

• The inputs to a step is the data that specific tool needs to process.

• The outputs to a step is what the tool produces.

2. Workflow based:

• The inputs to a workflow is what we (the user) must provide to run the tools.

• The outputs to a workflow is the result of processing from multiple tools.

To relate this back to baking cookies:

• The step ‘cook’ requires prepared cookie dough as an input and will produce baked cookies.

• The workflow ‘Bake chocolate cookies’ accepts a number of ingredients such as butter and flour as inputs.

4.2. Pipeline concepts 11

Janis

Steps

A step is an action that must be performed on a set of inputs, to get the desired output.

Nesting

A step can be one tool, or we can treat a set of actions as one tool. You will recognise that a set of actions is in fact a
workflow, so hence we can treat a workflow as one step (through the concept of nested workflows).

This nesting helps us to contain a set of logically related steps.

For example, when reading a book you must occasionally turn the page. We treat this as one action, however you can
break the action of turning the page of a book into many smaller actions such as gripping the page, moving your hand
and letting go of the page. However it would be cumbersome to think about performing each of these separate actions
for every page in the book!

Reproducibility

Portability

4.3 Tutorial 0 - Introduction to Janis

Janis is workflow framework that uses Python to construct a declarative workflow. It has a simple workflow API within
Python that you use to build your workflow. Janis converts your pipeline to the Common Workflow Language (CWL)
and Workflow Description Language (WDL) for execution, and it’s also great for publishing and archiving.

Janis was designed with a few points in mind:

• Workflows should be easy to build,

• Workflows and tools must be easily shared (portable),

• Workflows should be able to execute on HPCs and cloud environments.

• Workflows should be reproducible and re-runnable.

Janis uses an abstracted execution environment, which removes the shared file system in favour of you specifiying all
the files you need up front and passing them around as a File object. This allows the same workflow to be executable
on your local machine, HPCs and cloud, and we let the execution engine handle moving our files. This also
means that we can use file systems like S3, GCS, FTP and more without any changes to our workflow.

Instructions for setting up Janis on a compute cluster are under construction.

4.3.1 Requirements

• Local environment

• Python 3.6+

• Docker

• Python virtualenv (pip3 install virtualenv)

NB: This tutorial requires Docker to be installed and available.

12 Chapter 4. Contents

Janis

4.3.2 Installing Janis

We’ll install Janis in a virtual environment as it preserves versioning of Janis in a reproducible way.

1. Create and activate the virtualenv:

create virtual env
virtualenv -p python3 ~/janis/env
source the virtual env
source ~/janis/env/bin/activate

2. Install Janis through PIP:

pip install -q janis-pipelines

3. Test that janis was installed:

janis -v
-------------------- ------
janis-core v0.9.7
janis-assistant v0.9.9
janis-unix v0.9.0
janis-bioinformatics v0.9.5
janis-pipelines v0.9.2
janis-templates v0.9.4
-------------------- ------

Installing CWLTool

CWLTool is a reference workflow engine for the Common Workflow Language. Janis can run your workflow using
CWLTool and collect the results. For more information about which engines Janis supports, visit the Engine Support
page.

pip install cwltool

Test that CWLTool has installed correctly with:

cwltool --version
.../bin/cwltool 1.0.20190906054215

4.3.3 Running an example workflow with Janis

First off, let’s create a directory to store our janis workflows. This could be anywhere you want, but for now we’ll put
it at $HOME/janis/

mkdir ~/janis
cd ~/janis

You can test run an example workflow with Janis and CWLTool with the following command:

janis run --engine cwltool -o tutorial0 hello

You’ll see the INFO statements from CWLTool in terminal.

To see all logs, add -d to become:

4.3. Tutorial 0 - Introduction to Janis 13

https://github.com/common-workflow-language/cwltool
https://janis.readthedocs.io/en/latest/references/engines.html

Janis

janis -d run --engine cwltool -o tutorial0 hello

At the start, we see the two lines in our output:

2020-03-16T18:49:08 [INFO]: Starting task with id = 'd909df'
d909df

This is our workflow ID (wid) and is one way we can refer to our workflow.

After the workflow has completed (or in a different window), you can see the progress of this workflow with:

janis watch d909df

WID: d909df
EngId: d909df
Name: hello
Engine: cwltool
#
Task Dir: $HOME/janis/tutorial0
Exec Dir: None
#
Status: Completed
Duration: 4s
Start: 2020-03-16T07:49:08.367981+00:00
Finish: 2020-03-16T07:49:11.881006+00:00
Updated: 3h:51m:54s ago (2020-03-16T07:49:11+00:00)
#
Jobs:
[X] hello (1s)
#
Outputs:
- out: $HOME/janis/tutorial0/out

There is a single output out from the workflow, cat-ing this result we get:

cat $HOME/janis/tutorial0/out
Hello, World

Overriding an input

The workflow hello has one input inp. We can override this input by passing --inp $value onto the end of our
run statement. Note the structure for workflow parameters and parameter overriding:

janis run <run options> worklowname <workflow inputs>

We can run the following command:

janis run --engine cwltool -o tutorial0-override hello --inp "Hello, $(whoami)"

out: Hello, mfranklin

Running Janis in the background

You may want to run Janis in the background as it’s own process. You could do this with nohup [command] &,
however we can also run Janis with the --background flag and capture the workflow ID to watch, eg:

14 Chapter 4. Contents

Janis

wid=$(janis run \
--background --engine cwltool -o tutorial0-background \
hello \
--inp "Run in background")

janis watch $wid

4.3.4 Summary

• Setup a virtualenv

• Installed Janis and CWLTool

• Ran a small workflow with custom inputs

Next steps

• Workflow construction tutorial

4.4 Tutorial 1 - Building a Workflow

In this stage, we’re going to build a simple workflow to align short reads of DNA.

1. Start with a pair of compressed FASTQ files,

2. Align these reads using BWA MEM into an uncompressed SAM file (the de facto standard for short read align-
ments),

3. Compress this into the binary equivalent BAM file using samtools, and finally

4. Sort the reads using GATK4 SortSam.

These tools already exist within the Janis Tool Registry, you can see their documentation online:

• BWA MEM

• Samtols View

• GATK4 SortSam

4.4.1 Preparation

To prepare for this tutorial, we’re going to create a folder and download some data:

mkdir janis-tutorials && cd janis-tutorials

If WGET is installed
wget -q -O- "https://github.com/PMCC-BioinformaticsCore/janis-workshops/raw/master/
→˓janis-data.tar" | tar -xz

If CURL is installed
curl -Ls "https://github.com/PMCC-BioinformaticsCore/janis-workshops/raw/master/janis-
→˓data.tar" | tar -xz

4.4. Tutorial 1 - Building a Workflow 15

https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html
https://janis.readthedocs.io/en/latest/tools/bioinformatics/bwa/bwamem.html
https://janis.readthedocs.io/en/latest/tools/bioinformatics/samtools/samtoolsview.html
https://janis.readthedocs.io/en/latest/tools/bioinformatics/gatk4/gatk4sortsam.html

Janis

4.4.2 Creating our file

A Janis workflow is a Python script, so we can start by creating a file called alignment.py and importing Janis.

mkdir tools
vim tools/alignment.py # or vim, emacs, sublime, vscode

From the janis_core library, we’re going to import WorkflowBuilder and a String:

from janis_core import WorkflowBuilder, String

4.4.3 Imports

We have four inputs we want to expose on this workflow:

1. Sequencing Reads (FastqGzPair - paired end sequence)

2. Sample name (String)

3. Read group header (String)

4. Reference files (Fasta + index files (FastaWithIndex))

We’ve already imported the String type, and we can import FastqGzPair and FastaWithIndex from the
janis_bioinformatics registry:

from janis_bioinformatics.data_types import FastqGzPairedEnd, FastaWithDict

Tools

We’ve discussed the tools we’re going to use. The documentation for each tool has a row in the tbale caled “Python”
that gives you the import statement. This is how we’ll import how tools:

from janis_bioinformatics.tools.bwa import BwaMemLatest
from janis_bioinformatics.tools.samtools import SamToolsView_1_9
from janis_bioinformatics.tools.gatk4 import Gatk4SortSam_4_1_2

4.4.4 Declaring our workflow

We’ll create an instance of the WorkflowBuilder class, this just requires a name for your workflow (can contain
alphanumeric characters and underscores).

w = WorkflowBuilder("alignmentWorkflow")

A workflow has 3 methods for building workflows:

• workflow.input - Used for creating inputs,

• workflow.step - Creates a step on a workflow,

• workflow.output - Exposes an output on a workflow.

We give each input / step / output a unique identifier, which then becomes a node in our workflow graph. We can refer
to the created node using dot-notation (eg: w.input_name). We’ll see how this works in the later sections.

More information about each step will be linked from this page about the Workflow and WorkflowBuilder class.

16 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/workflow.html#janis.Workflow
https://janis.readthedocs.io/en/latest/references/workflow.html

Janis

Creating inputs on a workflow

Further reading: Creating an input

To create an input on a workflow, you can use the Workflow.input method, which has the following structure:

Workflow.input(
identifier: str,
datatype: DataType,
default: any = None,
doc: str = None

)

An input requires a unique identifier (string) and a DataType (String, FastqGzPair, etc). Let’s prepare the inputs for
our workflow:

w.input("sample_name", String)
w.input("read_group", String)
w.input("fastq", FastqGzPairedEnd)
w.input("reference", FastaWithDict)

Declaring our steps and connections

Further reading: Creating a step

Similar to exposing inputs, we create steps with the Workflow.step method. It has the following structure:

Workflow.step(
identifier: str,
tool: janis_core.tool.tool.Tool,
scatter: Union[str, List[str], ScatterDescription] = None,

)

We provide a identifier for the step (unique amongst the other nodes in the workflow), and intialise our tool, passing
our inputs of the step as parameters.

We can refer to an input (or previous result) using the dot notation. For example, to refer to the fastq input, we can
use w.fastq.

BWA MEM

We use bwa mem’s documentation to determine that we need to provide the following inputs:

• reads: FastqGzPair (connect to w.fastq)

• readGroupHeaderLine: String (connect to w.read_group)

• reference: FastaWithDict (connect to w.reference)

We can connect them to the relevant inputs to get the following step definition:

w.step(
"bwamem", # identifier
BwaMemLatest(

reads=w.fastq,
readGroupHeaderLine=w.read_group,
reference=w.reference

(continues on next page)

4.4. Tutorial 1 - Building a Workflow 17

https://janis.readthedocs.io/en/latest/references/workflow.html#creating-an-input
https://janis.readthedocs.io/en/latest/references/workflow.html#creating-a-step
https://janis.readthedocs.io/en/latest/tools/bioinformatics/bwa/bwamem.html

Janis

(continued from previous page)

)
)

Samtools view

We’ll use a very similar pattern for Samtools View, except this time we’ll reference the output of bwamem. From bwa
mem’s documentation, there is one output called out with type Sam. We’ll connect this to SamtoolsView only
input, called sam.

w.step(
"samtoolsview",
SamToolsView_1_9(

sam=w.bwamem.out
)

)

SortSam

In addition to connecting the output of samtoolsview to Gatk4 SortSam, we want to tell SortSam to use the
following values:

• sortOrder: "coordinate"

• createIndex: True

Instead of connecting an input or a step, we just just provide the literal value.

w.step(
"sortsam",
Gatk4SortSam_4_1_2(

bam=w.samtoolsview.out,
sortOrder="coordinate",
createIndex=True

)
)

Exposing outputs

Further reading: Creating an output

Outputs have a very similar syntax to both inputs and steps, they take an identifier and a named source
parameter. Here is the structure:

Workflow.output(
identifier: str,
datatype: DataType = None,
source: Node = None,
output_folder: List[Union[String, Node]] = None,
output_name: Union[String, Node] = None

)

18 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/workflow.html#creating-an-output

Janis

Often, we don’t want to specify the output data type, because we can let Janis do this for us. We’ll talk about the
output_folder and output_name in the next few sections. For now, we just have to specify an output identifier
and a source.

w.output("out", source=w.sortsam.out)

4.4.5 Workflow + Translation

Hopefully you have a workflow that looks like the following!

from janis_core import WorkflowBuilder, String

from janis_bioinformatics.data_types import FastqGzPairedEnd, FastaWithDict

from janis_bioinformatics.tools.bwa import BwaMemLatest
from janis_bioinformatics.tools.samtools import SamToolsView_1_9
from janis_bioinformatics.tools.gatk4 import Gatk4SortSam_4_1_2

w = WorkflowBuilder("alignmentWorkflow")

Inputs
w.input("sample_name", String)
w.input("read_group", String)
w.input("fastq", FastqGzPairedEnd)
w.input("reference", FastaWithDict)

Steps
w.step(

"bwamem",
BwaMemLatest(

reads=w.fastq,
readGroupHeaderLine=w.read_group,
reference=w.reference

)
)
w.step(

"samtoolsview",
SamToolsView_1_9(

sam=w.bwamem.out
)

)

w.step(
"sortsam",
Gatk4SortSam_4_1_2(

bam=w.samtoolsview.out,
sortOrder="coordinate",
createIndex=True

)
)

Outputs
w.output("out", source=w.sortsam.out)

We can translate the following file into Workflow Description Language using janis from the terminal:

4.4. Tutorial 1 - Building a Workflow 19

Janis

janis translate tools/alignment.py wdl

4.4.6 Running the alignment workflow

We’ll run the workflow against the current directory.

janis run -o . --engine cwltool \
tools/alignment.py \
--fastq data/BRCA1_R*.fastq.gz \
--reference reference/hg38-brca1.fasta \
--sample_name NA12878 \
--read_group "@RG\tID:NA12878\tSM:NA12878\tLB:NA12878\tPL:ILLUMINA"

After the workflow has run, you’ll see the outputs in the current directory:

ls

drwxr-xr-x mfranklin 1677682026 160B data
drwxr-xr-x mfranklin 1677682026 256B janis
-rw-r--r-- mfranklin wheel 2.7M out.bam
-rw-r--r-- mfranklin wheel 296B out.bam.bai
drwxr-xr-x mfranklin 1677682026 320B reference
drwxr-xr-x mfranklin 1677682026 128B tools

OPTIONAL: Run with Cromwell

If you have java installed, Janis can run the workflow in the Crowmell execution engine by using the --engine
cromwell parameter:

janis run -o run-with-cromwell --engine cromwell \
tools/alignment.py \
--fastq data/BRCA1_R*.fastq.gz \
--reference reference/hg38-brca1.fasta \
--sample_name NA12878 \
--read_group "@RG\tID:NA12878\tSM:NA12878\tLB:NA12878\tPL:ILLUMINA"

4.5 Tutorial 2 - Wrapping a new tool

This tutorial builds on the content and output from Tutorial 1.

4.5.1 Introduction

A CommandTool is the interface between Janis and a program to be executed. Simply put, a CommandTool has a
name, a command, inputs, outputs and a container to run in. Inputs and arguments can have a prefix and / or position,
and this is used to construct the command line.

The Janis documentation for the CommandTool gives an introduction to the tool structure and a template for construct-
ing your own tool. A tool wrapper must provide all of the information to configure and run the specified tool, this
includes the base_command, janis.ToolInput, janis.ToolOutput, a container and its version.

20 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html
https://janis.readthedocs.io/en/latest/references/commandtool.html
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-input
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-output

Janis

Container

Further information: Containerising your tools

For portability, Janis requires that you specify an OCI compliant container (eg: Docker) for your tool. Often there
will already be a container with some searching, however here’s a guide on preparing your tools in containers to ensure
it works across all environments.

4.5.2 Preparation

The sample data to test this tool is computed in Tutorial 1. You can follow this tutorial, but running the example will
require you to have completed and obtained the bam from the first tutorial.

4.5.3 Samtools flagstat

In this tutorial we’re going to wrap the samtools flagstat tool - flagstat counts the number of alignments for
each FLAG type within a bam file.

Samtools project links

• Latest version: 1.9

• Project page: http://www.htslib.org/doc/samtools.html

• Github: samtools/samtools

• Docker containers: quay.io/biocontainers/samtools (automatically / community generated)

– Latest tag: 1.9--h8571acd_11

Command to build

We want to replicate the following command for Samtools Flagstat in Janis:

samtools flagstat [--threads n] <in.bam>

Hence, we can isolate the following information:

• Base commands: "samtools", "flagstat"

• The positional <in.bam> input

• The configuration --threads input

Command tool template

The following template is the minimum amount of information required to wrap a tool. For more information, see the
CommandToolBuilder documentation.

We’ve removed the optional fields: tool_module, tool_provider, metadata, cpu, memory
from the following template.

We’re going to use Bam and TextFile data types, so let’s import them as well.

4.5. Tutorial 2 - Wrapping a new tool 21

https://janis.readthedocs.io/en/latest/tutorials/container.html
https://janis.readthedocs.io/en/latest/tutorials/container.html
https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html
http://www.htslib.org/doc/samtools.html
https://github.com/samtools/samtools
https://quay.io/repository/biocontainers/samtools?tag=latest&tab=tags
https://janis.readthedocs.io/en/latest/references/commandtool.html#janis.CommandToolBuilder
https://janis.readthedocs.io/en/latest/references/commandtool.html#template

Janis

from janis_core import CommandToolBuilder, ToolInput, ToolOutput, Int, Stdout

ToolName = CommandToolBuilder(
tool: str="toolname",
base_command=["base", "command"],
inputs=[], # List[ToolInput]
outputs=[], # List[ToolOutput]
container="container/name:version",
version="version"

)

Tool information

Let’s start by creating a file with this template inside a second output directory:

mkdir -p tools
vim tools/samtoolsflagstat.py

We can start by filling in the basic information:

• Rename the variable (ToolName) to be SamtoolsFlagstat

• Fill the parameters:

– tool: A unqiue tool identifier, eg: "SamtoolsFlagStat".

– base_command to be ["samtools", "flagstat"]

– container to be "quay.io/biocontainers/samtools:1.9--h8571acd_11"

– version to be "v1.9.0"

You’ll have a class definition like the following

SamtoolsFlagstat = CommandToolBuilder(
tool: str="samtoolsflagstat",
base_command=["samtools", "flagstat"],
container="quay.io/biocontainers/samtools:1.9--h8571acd_11",
version="1.9.0",

inputs=[], # List[ToolInput]
outputs=[] # List[ToolOutput]

)

Inputs

Further reading: ToolInput

We’ll use the ToolInput class to represent these inputs. A ToolInput provides a mechanism for binding this input
onto the command line (eg: prefix, position, transformations). See the documentation for more ways to configure a
ToolInput.

janis.ToolInput(
tag: str,
input_type: DataType,
position: Optional[int] = None,
prefix: Optional[str] = None,

(continues on next page)

22 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-input
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-input
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-input
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-input

Janis

(continued from previous page)

more configuration options
separate_value_from_prefix: bool = None,
prefix_applies_to_all_elements: bool = None,
presents_as: str = None,
secondaries_present_as: Dict[str, str] = None,
separator: str = None,
shell_quote: bool = None,
localise_file: bool = None,
default: Any = None,
doc: Optional[str] = None

)

Nb: A ToolInput must have a position OR prefix in order to be bound onto the command line. If
the prefix is specified with no position, a position=0 is automatically applied.

Now we can declare our two inputs:

1. Positional bam input

2. Threads configuration input with the prefix --threads

We’re going to give our inputs a name through which we can reference them by. This allows us to specify a value from
the command line, or connect the result of a previous step within a workflow.

SamtoolsFlagstat = CommandToolBuilder(
... tool information
inputs=[

1. Positional bam input
ToolInput(

"bam", # name of our input
Bam,
position=1,
doc="Input bam to generate statistics for"

),
2. `threads` inputs
ToolInput(

"threads", # name of our input
Int(optional=True),
prefix="--threads",
doc="(-@) Number of additional threads to use [0]"

)
],
outputs

Outputs

Further reading: ToolOutput

We’ll use the ToolOutput class to collect and represent these outputs. A ToolOutput has a type, and if not using
stdout we can provide a glob parameter.

janis.ToolOutput(
tag: str,
output_type: DataType,
glob: Union[janis_core.types.selectors.Selector, str, None] = None,
more configuration options
presents_as: str = None,

(continues on next page)

4.5. Tutorial 2 - Wrapping a new tool 23

https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html#bwa-mem
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-output
https://janis.readthedocs.io/en/latest/references/commandtool.html#tool-output

Janis

(continued from previous page)

secondaries_present_as: Dict[str, str] = None,
doc: Optional[str] = None

)

The only output of samtools flagstat is the statistics that are written to stdout. We give this the name
"stats", and collect this with the Stdout data type. We can additionally tell Janis that the Stdout has type
TextFile.

SamtoolsFlagstat = CommandToolBuilder(
... tool information + inputs
outputs=[

ToolOutput("stats", Stdout(TextFile))
]

)

Tool definition

Putting this all together, you should have the following tool definition:

from janis_core import CommandToolBuilder, ToolInput, ToolOutput, Int, Stdout

from janis_unix.data_types import TextFile
from janis_bioinformatics.data_types import Bam

SamtoolsFlagstat = CommandToolBuilder(
tool="samtoolsflagstat",
base_command=["samtools", "flagstat"],
container="quay.io/biocontainers/samtools:1.9--h8571acd_11",
version="v1.9.0",
inputs=[

1. Positional bam input
ToolInput("bam", Bam, position=1),
2. `threads` inputs
ToolInput("threads", Int(optional=True), prefix="--threads"),

],
outputs=[ToolOutput("stats", Stdout(TextFile))],

)

4.5.4 Testing the tool

We can test the translation of this from the CLI:

If you have multiple command tools or workflows declared in the same file, you will need to provide the
--name parameter with the name of your tool.

janis translate tools/samtoolsflagstat.py wdl # or cwl

In the following translation, we can see the WDL representation of our tool. In particular, the command block gives
us an indication of how the command line might look:

task samtoolsflagstat {
input {
Int? runtime_cpu

(continues on next page)

24 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/datatypes/textfile.html

Janis

(continued from previous page)

Int? runtime_memory
File bam
Int? threads

}
command <<<
samtools flagstat \

~{"--threads " + threads} \
~{bam}

>>>
runtime {
docker: "quay.io/biocontainers/samtools:1.9--h8571acd_11"
cpu: if defined(runtime_cpu) then runtime_cpu else 1
memory: if defined(runtime_memory) then "~{runtime_memory}G" else "4G"
preemptible: 2

}
output {
File stats = stdout()

}
}

Running the workflow

A reminder that the sample data for this section requires you to have completed Tutorial 1.

We can call the janis run functionality, and use the output from tutorial1:

janis run -o tutorial2 tools/samtoolsflagstat.py --bam tutorial1/out.bam

OUTPUT:

WID: f9e89f
EngId: f9e89f
Name: samtoolsflagstatWf
Engine: cwltool

Task Dir: $HOME/janis-tutorials/tutorial2/
Exec Dir: $HOME/janis-tutorials/tutorial2/janis/execution/

Status: Completed
Duration: 4s
Start: 2019-11-14T04:51:59.744526+00:00
Finish: 2019-11-14T04:52:03.869735+00:00
Updated: Just now (2019-11-14T04:52:05+00:00)

Jobs:
[X] samtoolsflagstat (N/A)

Outputs:
- stats: $HOME/janis-tutorials/tutorial2/stats.txt

Janis (and CWLTool) said the tool executed correctly, let’s check the output file:

cat tutorial2/stats.txt

4.5. Tutorial 2 - Wrapping a new tool 25

Janis

20061 + 0 in total (QC-passed reads + QC-failed reads)
0 + 0 secondary
337 + 0 supplementary
0 + 0 duplicates
19971 + 0 mapped (99.55% : N/A)
19724 + 0 paired in sequencing
9862 + 0 read1
9862 + 0 read2
18606 + 0 properly paired (94.33% : N/A)
19544 + 0 with itself and mate mapped
90 + 0 singletons (0.46% : N/A)
860 + 0 with mate mapped to a different chr
691 + 0 with mate mapped to a different chr (mapQ>=5)

4.6 Tutorial 3 - Naming and organising outputs

Sometimes it’s useful to organise your outputs in specific ways, especially when Janis might need to interact with
other specific systems. By default, outputs are named by the tag of the output. The extension is derived from the type
of the output (the Bam filetype knows it uses a .bam extension).

For example, if you had an output called out which had type BamBai, your output files by default would have the
name out.bam and out.bam.bai.

When exposing an output on a workflow, there are two arguments you can provide to override this behaviour:

• output_name: Union[str, InputSelector, InputNode] = None

• output_folder: Union[str, Tuple[Node, str], List[Union[str,
InputSelector, Tuple[Node, str]]]] = None

4.6.1 Preparation

This tutorial uses the workflow build in Tutorial 1. You can follow this guide, but the example will require you to have
built (or acquired) the workflow from tutorial 1.

4.6.2 Output name

Simply put, output_name is the dervied filename of the output without the extension. By default, this is the tag of
the output.

You can specify a new output name in 2 ways:

1. A static string: output_name="new name for output"

2. Selecting an input value (given “sample_name” is the name of an input):

1. output_name=workflow.sample_name

2. output_name=InputSelector("sample_name")

You should make the following considerations:

• The input you select should be a string, or

• If the output you’re naming is an array, the input you select should either be:

– singular

26 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/datatypes/bam.html
https://janis.readthedocs.io/en/latest/tutorials/tutorial1.html

Janis

– have the same number of elements in it.

Janis will either fall back to the first element if it’s a list, or default to the output tag. This may cause outputs to
override each other.

4.6.3 Output folder

Similar to the output name, the output_folder is folder, or group of nested folders into which your output will be
written. By default, this field has no value and outputs are linked directly into the output directory.

If the output_folder field is an array, a nested folder is created for each element in ascending order (eg: ["parent",
"child", "child_of_child"]).

There are multiple ways to specify output directories:

1. A static string: output_folder="my_outputs"

2. Selecting an input value (given “sample_name” is the name of an input):

1. output_folder=workflow.sample_name

2. output_folder=InputSelector("sample_name")

3. An array of a combination of values:

• output_folder=["variants", "unmerged"]

• output_folder=["variants", w.sample_name]

• output_folder=[w.other_field, w.sample_name]

4.6.4 Alignment workflow

In our alignment example (tools/alignment.py), we have the following outputs:

w.output("out", source=w.sortsam.out)
w.output("stats", source=w.flagstat.stats)

We want to name the output in the following way:

• Grouped the bam out into the folder: bams,

• Group the samtools summary into folder statistics

• Both outputs named: sample_name (Janis will automatically add the .bam or .txt extension).

w.output(
"out",
source=w.sortsam.out,
output_name=w.sample_name,
output_folder=["bams"]

)
w.output(

"stats",
source=w.flagstat.stats,
output_name=w.sample_name,
output_folder=["statistics"]

)

Run the workflow again and inspect the new results:

4.6. Tutorial 3 - Naming and organising outputs 27

Janis

janis translate tools/alignment.py wdl
janis run -o tutorial3 tools/alignment.py \

--fastq data/BRCA1_R*.fastq.gz \
--reference reference/hg38-brca1.fasta \
--sample_name NA12878 \
--read_group "@RG\tID:NA12878\tSM:NA12878\tLB:NA12878\tPL:ILLUMINA"

And then after the workflow has finished, we find the following output structure:

$ ls tutorial3/*

tutorial3/bams:
-rw-r--r-- PMCI\Bioinf-Cluster 2.7M NA12878.bam
-rw-r--r-- PMCI\Bioinf-Cluster 296B NA12878.bam.bai

tutorial3/statistics:
-rw-r--r-- PMCI\Bioinf-Cluster 408B NA12878.txt

tutorial3/janis:
[...ommitted]

4.7 Adding a tool to a toolbox

This section is optional.

This section requires that you have Git configured, and a GitHub account.

4.7.1 Fork

A fork is a copy of a repository. Forking a repository allows you to freely experiment with changes
without affecting the original project. - GitHub: Fork a Repo

Further reading: Fork an example repository

If you want to add tools to an existing toolbox, you could for example,

• Fork janis-unix.

• Add and test new tools,

• Create a Pull Request to integrate your changes.

To create a fork of janis-unix:

1. Navigate to the Janis-Unix repository:

https://github.com/PMCC-BioinformaticsCore/janis-unix

2. In the top-right corner of the page, click Fork.

Fork
a repository

28 Chapter 4. Contents

https://git-scm.com/
https://help.github.com/en/github/getting-started-with-github/signing-up-for-a-new-github-account
https://help.github.com/en/github/getting-started-with-github/fork-a-repo
https://help.github.com/en/github/getting-started-with-github/fork-a-repo#fork-an-example-repository
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/creating-a-pull-request#creating-the-pull-request

Janis

Clone your fork

1. Clone your repoistory
git clone https://github.com/yourusername/janis-unix.git

2. Go into the checked out code
cd janis-bioinformatics

3. Add the original repo as 'upstream'
git remote add upstream https://github.com/PMCC-BioinformaticsCore/janis-unix.git

Keeping your fork up to date

Further reading: Syncing a fork

1. Get the changes from the original changes
git fetch upstream master

2. Merge these changes into your current branch
git merge upstream/master

3. Push these updates to your fork
git push

You may have to deal with conflicts if changes in the upstream have modified the same files you’ve locally modified.

4.7.2 Making a change

First off, make sure your fork is up to date. Then let’s checkout to a new branch:

git checkout -b add-greet-tool

Our new tool is going to simply print "Hello, " + $name to the console.

vim janis_unix/tools/greet.py

from janis_core import String, ToolInput, ToolOutput, ToolArgument, Stdout, Boolean
from .unixtool import UnixTool

class Greet(UnixTool):
def tool(self):

return "greet"

def friendly_name(self):
return "Greet"

def base_command(self):
return "echo"

def arguments(self):
return [ToolArgument("Hello, ", position=0)]

def inputs(self):

(continues on next page)

4.7. Adding a tool to a toolbox 29

https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork

Janis

(continued from previous page)

return [ToolInput("name", String(), position=1)]

def outputs(self):
return [ToolOutput("out", Stdout())]

Let’s make sure we add the Greet tool to be exported by this toolbox:

vim janis_unix/tools/__init__.py

...other imports
from .hello import HelloWorkflow
from .greet import Greet

Install the repository

The Janis environment at Peter Mac has been configured to allow your locally installed modules to override the
modules from within the python environment.

You just have to reference the version of pip3 outside of the Janis Python env: /usr/bin/pip3.

Don’t forget the . at the end of the pip install!

--no-dependencies flag ensures we don't install janis core / assistant
/usr/bin/pip3 install --no-dependencies --user .

Testing the change

Let’s test the tool we just added:

janis spider Greet

Voila! We added a tool to the janis-unix toolbox.

4.7.3 Commit and push your changes

Let’s commit our changes!

0. Check the status of your changes
git status

1. Stage our changes to commit (all of them)
git add .

2. Commit with a message
git commit -m "Adds new tool 'Greet'"

We want to push your branch add-greet-tool to the remote to create a pull request.

Set the upstream on our branch, and push to remote 'origin'
git push --set-upstream origin add-greet-tool

Total 0 (delta 0), reused 0 (delta 0)

(continues on next page)

30 Chapter 4. Contents

Janis

(continued from previous page)

remote:
remote: Create a pull request for 'add-greet-tool' on GitHub by visiting:
remote: https://github.com/yourname/janis-unix/pull/new/add-greet-tool
remote:
To github.com:yourname/janis-unix.git

* [new branch] add-greet-tool -> add-greet-tool
Branch 'add-greet-tool' set up to track remote branch 'add-greet-tool' from 'origin'.

Create a pull request by clicking the link:

• https://github.com/yourname/janis-unix/pull/new/add-greet-tool

4.8 Running your workflow

Now you’ve built your workflow, let’s run it on your computer.

_We’re working on a runner for engine that allows you to run your favourite workflow engine without going through
this manual export process. Stay tuned for more!

4.8.1 Overview

In this tutorial, we’re going to run the workflow you have built with janis-runner. Behind the scenes this uses
Cromwell or CWLTool to manage the execution.

Engines

To run the workflow, we’re going to use a workflow execution engine, or just engine for short. Some engines only
accept certain workflow specifications, for example the CWL reference engine (cwltool) only accepts CWL, while
Cromwell (developed by the Broad Institute) accepts both WDL and CWL.

4.8.2 What you’ll need

To complete this tutorial, you’ll need to have an installation of janis (see the Getting Started guide for more info), a
workflow to run and an engine available.

Execution Engine

CWLTool

cwltool is the reference engine for CWL. We’d recommend visiting the install guide, however you can install
cwltool through Pip by running:

pip3 install cwltool

4.8. Running your workflow 31

https://github.com/common-workflow-language/cwltool
https://github.com/broadinstitute/cromwell
https://github.com/common-workflow-language/cwltool#install

Janis

WDL

For WDL, we’d recommend Cromwell, developed by the Broad Institute and developed alongside the openwdl
community. You can find their docs here. Cromwell is packaged as a jar file, you must have a Java 8 runtime
installed (ie, running java -version in the console gives you 1.8.0 or higher).

Janis will automatically download Cromwell, or it will automatically detect versions in ~/.janis/. It’s possible to
configure Cromwell to run in a variety of ways through the configuration guide.

Containerisation

Most commonly, people use docker which both cwltool and Cromwell support by default. Some HPC friendly
alternatives includesingularity and udocker; although these engines can be configured independently with both
of these user-space replacements, we’re still working on an easy way to configure Janis to use these.

4.8.3 Let’s get started

We’re going to use the Janis command-line interface (CLI) to run these workflows and track their progress. For
this example, we’re going to run the Hello workflow and put the relevant output files in an output directory called
hello_dir.

By default, Janis will run the workflow using CWLTool, this can be changed by passing the --engine parameter
with either "cwltool" or "cromwell".

Let’s do that now:

janis run --engine [cwltool|cromwell] -o hello_dir hello

We’ll see some important information in our console:

• The ID of our task. This is useful to gain access to our workflow information at a later date.

2019-09-26T00:25:00+00:00 [INFO]: Starting task with id = 'a4f047'

• The metadata screen, this tells us about the progress of our workflow.

– There are 3 status indicators:

* [...]: processing

* [~]: running

* [X]: completed

* [!]: failed

TID: a4f047
WID: 1ca1d418-df9b-45ea-b6b8-2d210be310b3
Name: hello

Engine: cromwell
Engine url: localhost:56232

Task Dir: /Users/franklinmichael/janis/execution/hello/20190926_102526_a4f047/
Exec Dir: /Users/franklinmichael/cromwell-executions/hello/1ca1d418-df9b-45ea-b6b8-
→˓2d210be310b3

(continues on next page)

32 Chapter 4. Contents

https://cromwell.readthedocs.io/en/stable/tutorials/FiveMinuteIntro/
../runner/index.html
https://www.docker.com/get-started

Janis

(continued from previous page)

Status: Completed
Duration: 17
Start: 2019-09-26T00:25:55.771000+00:00
Finish: 2019-09-26T00:26:13.079000+00:00

Jobs:
[X] hello.hello (13s :: 76.5 %)

...

Finished managing task 'a4f047'. View the task outputs: file:///Users/franklinmichael/
→˓janis/execution/hello/20190926_102526_a4f047/
a4f047

If we look at the contents of our output directory ($task dir + "/outputs/", eg: /Users/
franklinmichael/janis/execution/hello/20190926_102526_a4f047/outputs/), we see one
file called hello.out which contains the string “Hello, World!”.

Overriding workflow inputs

The hello workflow allows us to override the string that gets printed to the console. We can see in the hello
documentation, there is an input called inp (optional string) that we can override.

There are two ways to override inputs in Janis:

1. Creating a yaml job file: janis inputs hello > hello-job.yml, this file can be modified and pro-
vided to the run with --inputs hello-job.yml.

2. Parameter overrides within the run command.

We’re going to take the second route by providing "Hello, Janis!" to the workflow:

janis run hello --inp "Hello, Janis!"

Outputting the result in the outputs folder yields:

Hello, Janis!

Success!

4.8.4 Finished!

Congratulations on running your workflow! You can now get more advanced with the following tutorials:

• Building a simple bioinformatics workflow

• Building tools

4.8.5 Advanced arguments

CPU and Memory overrides

• runtime_cpu: int is the number of cpus that are required.

4.8. Running your workflow 33

https://janis.readthedocs.io/en/latest/tools/unix/hello.html
https://janis.readthedocs.io/en/latest/tools/unix/hello.html

Janis

• runtime_memory: float is specified in number of Gigabytes.

• runtime_disks: string is specified in the format target size type (eg: "local-disk 100
SSD")

When exporting the workflow, you have the ability to generate schema that allows you to override the cpu and
memory values at a workflow inputs level. That is, you can include parameters in your input file that will ask the
engine to run your workflow with specific memory and cpu requirements.

You can generate a workflow with resource overrides like so:

w.translate("cwl", with_resource_overrides=True, **other_kwargs)

You can generate an inputs file with the overrides withe following:

def generate_inputs_override(
additional_inputs=None,
with_resource_overrides=False,
hints=None

):
pass

or with the CLI:

janis inputs myworkflow.py [--resources] > job.yaml

In CWL, this looks like:

taskname_runtime_cpu: null
taskname_runtime_memory: null
subworkflowname_task2name_runtime_cpu: null
subworkflowname_task2name_runtime_memory: null

And in WDL:

{
"$name.taskname_runtime_memory": null,
"$name.taskname_runtime_cpu": null,
"$name.taskname_runtime_disks": null,
"$name.subworkflowname_task2name_runtime_cpu": null,
"$name.subworkflowname_task2name_runtime_cpu": null,
"$name.subworkflowname_task2name_runtime_disks": null

}

Overriding export location

Default: export_path='.'

You can override the export path to a more convenient location, by providing the ‘‘parameter to translate. Prefix-
ing the path with ~ (tilde) will replace this per os.path.expanduser. You can also use the following placeholders
(see github/janis/translation/exportpath for more information):

• "{language}" - ‘cwl’ or ‘wdl’

• "{name}" - Workflow identifier

You can output a workflow through the CLI with the following commmand:

34 Chapter 4. Contents

https://docs.python.org/3/library/os.path.html#os.path.expanduser
https://github.com/PMCC-BioinformaticsCore/janis/blob/master/janis/translations/exportpath.py

Janis

janis translate myworkflow.py [cwl|wdl] --output-dir /path/to/outputdir/

4.9 Containerising a tool

Portability and reproducibility are important aspects of janis. Building and using containers for your tool is a great
way to ensure compatibility and portability across institutes.

4.9.1 Getting started

In this tutorial, we’re going to introduce containers and go through different ways to find or build containers for your
tool.

What you’ll need

You’ll need an installation of Docker, and a Dockerhub account for uploading your tool to the cloud. Other cloud-
container vendors such as quay.io may be used instead of Dockerhub.

You’ll also need your tool, the dependencies and know how to install it.

Licenses and warnings

You should have all relevant permission to be able to distribute the tool that you are wrapping. Most open source
licenses allow you distribute a compiled or derived version, but may have some restrictions.

Versioning

It’s important that we consider the versions of our tool when we construct our container. A large factor of this project
is reproducibility, and this is only possible if we use the same tools. We highly discourage the use of the latest tag,
and instead tag the container with its explicit version.

Note: The same docker tag doesn’t ensure you get the same container each time as a user can upload a
new build for the same tag. Ideally you could use the Docker digest however not all container software
support this.

4.9.2 Let’s get started!

What are containers

Containers are allow an operating system and software to be virtualised on a different computer (the host). Although
containers can be used for a variety of purposes, we use them as a “sandbox” for us to run analysis in. The important
aspect for us is that we can guarantee reproducibility with the same container across compute platforms.

In this guide we’ll be creating Docker containers, however other virtualisation software (such as Singularity, uDocker
or Shifter) can read this common (OCI compliant) standard.

4.9. Containerising a tool 35

https://quay.io/
https://choosealicense.com/appendix/#distribution
https://choosealicense.com/appendix/#distribution
https://success.docker.com/article/images-tagging-vs-digests
https://www.opencontainers.org/

Janis

How do I get a container?

When we look for a container, we want to make sure it’s high quality and is as described. Some services (such as the
community supported Biocontainers) produce high quality containers.

Here is a number of criteria we’re looking for in a container:

• From a reputable source.

• The Dockerfile is available (gives us trust that there’s not malicious software in there).

• The versions available are sensible and match the software versions.

– A container with only the latest tag does not satisfy this criteria.

Here is our recommendation for finding a container given the listed criteria:

1. Look for a container from the tool provider (maybe through their GitHub).

2. Look for a container from a reputable source on Dockerhub or quay.io.

3. Find a third-party container that meets all the criteria above.

If you are unable to find a container, you might need to build one (and maybe find a tech savvy colleague to help you).

4.9.3 Building a container

We’re going to build a Docker container as at the moment they are the most portable option. Each Docker container
has a recipe, called a Dockerfile, it’s a special file that tells Docker how a container is built, and how it should be
executed.

Each container should have a base, ie an operating system or even another docker container.

Here are the following types of containers we’ll create:

• Python module

• Python script

• Downloadable binary w/ requirements

• Makeable program

Basic setup

For all of the following guides, you’ll need to create a folder for your Dockerfile and other dependencies. It’s important
you place your dependencies within this directory (or subdirectories) to avoid bloating your build context.

tooldir=mytool-docker
mkdir $tooldir && cd $tooldir
touch Dockerfile

Python module

We’re going to package up a Python module that you can run from the console. For this example we’ll wrap Janis in a
container.

Within the setup.py, it has a dictionary value within the entry_points kwarg and a value for the
console_script key. For example, Janis-assitant setup.py:24 looks like this:

36 Chapter 4. Contents

https://biocontainers.pro/#/registry
https://hub.docker.com/search/?q=&type=image
https://quay.io/search?q=
https://docs.docker.com/engine/reference/builder/
https://medium.com/lucjuggery/docker-tips-about-the-build-context-dbc76505e178
https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/setup.py#L24

Janis

entry_points={
"console_scripts": ["janis=janis_assistant.cli:process_args"],

}

Given our application is compatible with Python 3.7, we simply pip install our module on top, place this in our
Dockerfile:

FROM python:3.7
RUN pip install janis-pipelines
CMD janis

Although janis-pipelines is compatible with the alpine Python 3.7 container, we’ll use the full
version, see “The best Docker base image for your Python application” for more information.

We can build this container with the following command which will

• Use the build context: .

• Automatically build the file called Dockerfile relative to the build context

• Give the container the tag: yourname/packagename

docker build -t yourname/janis-pipelines .

We can test the container works by running:

docker run yourname/janis-pipelines janis -v
#-------------------- ------
#janis-core v0.7.1
#janis-assistant v0.7.7
#janis-unix v0.7.0
#janis-bioinformatics v0.7.1
#-------------------- ------

OR:

docker run -it --entrypoint /bin/sh yourname/janis-pipelines
inside the container
$ janis translate hello wdl
translation here
$ exit # exit the container

Python script

We have a single python script that we want to run inside a Docker container. This time we’re going to add our files
to the /opt directory (in the container), add that directory to the $PATH variable and then we can simply call your
docker container.

We’re going to create a little Python program to write something to the console and then end. Save the following
Python program (including the Shebang) into the directory with our Dockerfile.

hello.py:

#!/usr/bin/env python3
print("Hello, World")

We need to make hello.py executable by:

4.9. Containerising a tool 37

https://pythonspeed.com/articles/base-image-python-docker-images/
https://en.wikipedia.org/wiki/Shebang_(Unix)

Janis

chmod +x hello.py

We can test this worked by calling our script, by running ./hello.py in our terminal

We’ll now edit our Dockerfile with the following steps:

• Use a python:3.7 base.

• Add the file into container.

• Modify the path to include the script directory (/opt).

• Use the hello.py script an entry-point.

FROM python:3.7.5-alpine
ADD hello.py /opt/
ENV PATH="/opt:${PATH}"
CMD hello.py

We can build this container with the following command:

Don’t forget the full stop . at the end of the docker build command

docker build -t yourname/hello .

You can test that it worked in two ways:

1. Run the container (using the entrypoint (CMD) hello.py):

docker run yourname/hello
Hello, World!

1. Go into the container, and run the script:

docker run -it --entrypoint /bin/sh yourname/hello
inside the container
$ hello.py
Hello, World!
$ exit # exit the container

Downloadable Binary with Requirements

This section is still under construction.

This style of container is very similar to the Python script. We’ll ADD our binary (potentially from the web) to /opt/
toolname, add this to the path and add an entry point.

You will need to consider which Base OS to use, for now we’ll use alpine as it’s very lightweight, but you might need
to consider ubuntu or centos. We’ll assume that your tool mytool runs out of a bin folder.

Dockerfile

FROM alpine:latest
RUN mkdir -p /opt/mytool/
ADD https://mytool.net/releases/tool.zip /opt/
ENV PATH="/opt/mytool/bin:${PATH}" # assume ./mytool/bin/
CMD mytool

38 Chapter 4. Contents

Janis

Makeable Program

This section is under construction, please refer to an example Samtools Docker for more information:

Dockerfile

FROM ubuntu:16.04

MAINTAINER Michael Franklin <michael.franklin@petermac.org>

RUN apt-get update -qq \
&& apt-get install -qq bzip2 gcc g++ make zlib1g-dev wget libncurses5-dev liblzma-

→˓dev libbz2-dev

ENV SAMTOOLS_VERSION 1.9

LABEL \
version="${SAMTOOLS_VERSION}" \
description="Samtools image for use in Workflows"

RUN cd /opt/ \
&& wget https://github.com/samtools/samtools/releases/download/${SAMTOOLS_

→˓VERSION}/samtools-${SAMTOOLS_VERSION}.tar.bz2 \
&& tar -xjf samtools-${SAMTOOLS_VERSION}.tar.bz2 \
&& rm -rf samtools-${SAMTOOLS_VERSION}.tar.bz2 \
&& cd samtools-${SAMTOOLS_VERSION}/ \
&& make && make install

ENV PATH="/opt/samtools-${SAMTOOLS_VERSION}/:${PATH}"

4.9.4 Additional helpful hints

Keeping Dockerfiles separate from source code

You can keep your Dockerfile in a different place to your file (with restrictions) however you must change a few
arguments:

• Your build context (the last argument) should be in a place that can access both the Dockerfile and program files
as subdirectories

• The COPY hello.py command in the Dockerfile must be changed to be relative to the build context.

• You can then supply -f argument to point to the Dockerfile, relative to the build context:

Example: If the python hello.py file is stored in a subdirectory called src, and the Dockerfile is stored in a
subdirectory called docker_stuff, you could use the following:

Dockerfile:

COPY src/hello.py /install_dir/hello.py

Build:

Change into the parent directory of src/ and docker_stuff/

docker build -t yourname/hello -f dockerstuff/Dockerfile .

4.9. Containerising a tool 39

https://github.com/PMCC-BioinformaticsCore/scripts/blob/master/dockers/samtools/Dockerfile

Janis

The less steps your run, the smaller the container

By joining RUN commands together using the && operator, your total containers may be smaller in size.

4.10 Pipelines

4.11 Tools

Automatically generated index page for Tools:

4.12 Data Types

Automatically generated index page for Data Types:

4.12.1 BAI

Index of the BAM file (https://www.biostars.org/p/15847/), http://software.broadinstitute.org/software/igv/bam

Quickstart

from janis_bioinformatics.data_types.bai import Bai

w = WorkflowBuilder("my_workflow")

w.input("input_bai", Bai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.2 BAM

A binary version of a SAM file, http://software.broadinstitute.org/software/igv/bam

Quickstart

from janis_bioinformatics.data_types.bam import Bam

w = WorkflowBuilder("my_workflow")

w.input("input_bam", Bam(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

40 Chapter 4. Contents

https://www.biostars.org/p/15847/
http://software.broadinstitute.org/software/igv/bam
http://software.broadinstitute.org/software/igv/bam

Janis

4.12.3 bed

A local file

Quickstart

from janis_bioinformatics.data_types.bed import Bed

w = WorkflowBuilder("my_workflow")

w.input("input_bed", Bed(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.4 BedGz

A gzipped file

Quickstart

from janis_bioinformatics.data_types.bed import BedGz

w = WorkflowBuilder("my_workflow")

w.input("input_bedgz", BedGz(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.5 BedTABIX

A gzipped file

Secondary Files

• .tbi

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.bed import BedTabix

w = WorkflowBuilder("my_workflow")

(continues on next page)

4.12. Data Types 41

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

(continued from previous page)

w.input("input_bedtabix", BedTabix(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.6 Boolean

A boolean

Quickstart

from janis_core.types.common_data_types import Boolean

w = WorkflowBuilder("my_workflow")

w.input("input_boolean", Boolean(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.7 CompressedIndexedVCF

.vcf.gz with .vcf.gz.tbi file

Secondary Files

• .tbi

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.vcf import VcfTabix

w = WorkflowBuilder("my_workflow")

w.input("input_vcftabix", VcfTabix(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.8 CompressedTarFile

A gzipped tarfile

42 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

Quickstart

from janis_unix.data_types.tarfile import TarFileGz

w = WorkflowBuilder("my_workflow")

w.input("input_tarfilegz", TarFileGz(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.9 CompressedVCF

.vcf.gz

Quickstart

from janis_bioinformatics.data_types.vcf import CompressedVcf

w = WorkflowBuilder("my_workflow")

w.input("input_compressedvcf", CompressedVcf(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.10 CRAI

Index of the CRAM file https://samtools.github.io/hts-specs/CRAMv3.pdf

Quickstart

from janis_bioinformatics.data_types.crai import Crai

w = WorkflowBuilder("my_workflow")

w.input("input_crai", Crai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.11 CRAM

A binary version of a SAM file, https://samtools.github.io/hts-specs/CRAMv3.pdf

4.12. Data Types 43

https://samtools.github.io/hts-specs/CRAMv3.pdf
https://samtools.github.io/hts-specs/CRAMv3.pdf

Janis

Quickstart

from janis_bioinformatics.data_types.cram import Cram

w = WorkflowBuilder("my_workflow")

w.input("input_cram", Cram(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.12 CramPair

A Cram and Crai as the secondary

Secondary Files

• .crai

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.cram import CramCrai

w = WorkflowBuilder("my_workflow")

w.input("input_cramcrai", CramCrai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.13 csv

A comma separated file

Quickstart

from janis_unix.data_types.csv import Csv

w = WorkflowBuilder("my_workflow")

w.input("input_csv", Csv(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

44 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

4.12.14 Directory

A directory of files

Quickstart

from janis_core.types.common_data_types import Directory

w = WorkflowBuilder("my_workflow")

w.input("input_directory", Directory(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.15 Double

An integer

Quickstart

from janis_core.types.common_data_types import Double

w = WorkflowBuilder("my_workflow")

w.input("input_double", Double(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.16 Fasta

A local file

Quickstart

from janis_bioinformatics.data_types.fasta import Fasta

w = WorkflowBuilder("my_workflow")

w.input("input_fasta", Fasta(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.17 FastaBwa

A local file

4.12. Data Types 45

Janis

Secondary Files

• .amb

• .ann

• .bwt

• .pac

• .sa

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaBwa

w = WorkflowBuilder("my_workflow")

w.input("input_fastabwa", FastaBwa(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.18 FastaFai

A local file

Secondary Files

• .fai

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaFai

w = WorkflowBuilder("my_workflow")

w.input("input_fastafai", FastaFai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

46 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html
https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

4.12.19 FastaGz

A local file

Quickstart

from janis_bioinformatics.data_types.fasta import FastaGz

w = WorkflowBuilder("my_workflow")

w.input("input_fastagz", FastaGz(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.20 FastaGzBwa

A local file

Secondary Files

• .amb

• .ann

• .bwt

• .pac

• .sa

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaGzBwa

w = WorkflowBuilder("my_workflow")

w.input("input_fastagzbwa", FastaGzBwa(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.21 FastaGzFai

A local file

4.12. Data Types 47

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

Secondary Files

• .fai

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaGzFai

w = WorkflowBuilder("my_workflow")

w.input("input_fastagzfai", FastaGzFai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.22 FastaGzWithIndexes

A local file

Secondary Files

• .amb

• .ann

• .bwt

• .pac

• .sa

• .fai

• ^.dict

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaGzWithIndexes

w = WorkflowBuilder("my_workflow")

w.input("input_fastagzwithindexes", FastaGzWithIndexes(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

48 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html
https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

4.12.23 FastaWithIndexes

A local file

Secondary Files

• .fai

• .amb

• .ann

• .bwt

• .pac

• .sa

• ^.dict

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaWithIndexes

w = WorkflowBuilder("my_workflow")

w.input("input_fastawithindexes", FastaWithIndexes(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.24 FastDict

A local file

Secondary Files

• ^.dict

Note: For more information, visit Secondary / Accessory Files

Quickstart

4.12. Data Types 49

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html
https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

from janis_bioinformatics.data_types.fasta import FastaDict

w = WorkflowBuilder("my_workflow")

w.input("input_fastadict", FastaDict(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.25 FastGzDict

A local file

Secondary Files

• .fai

• ^.dict

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.fasta import FastaGzDict

w = WorkflowBuilder("my_workflow")

w.input("input_fastagzdict", FastaGzDict(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.26 Fastq

FASTQ files are text files containing sequence data with quality score, there are different typeswith no standard:
https://www.drive5.com/usearch/manual/fastq_files.html

Quickstart

from janis_bioinformatics.data_types.fastq import Fastq

w = WorkflowBuilder("my_workflow")

w.input("input_fastq", Fastq(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

50 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html
https://www.drive5.com/usearch/manual/fastq_files.html

Janis

4.12.27 FastqGz

FastqGz files are compressed sequence data with quality score, there are different typeswith no standard: https://en.
wikipedia.org/wiki/FASTQ_format

Quickstart

from janis_bioinformatics.data_types.fastq import FastqGz

w = WorkflowBuilder("my_workflow")

w.input("input_fastqgz", FastqGz(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.28 File

A local file

Quickstart

from janis_core.types.common_data_types import File

w = WorkflowBuilder("my_workflow")

w.input("input_file", File(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.29 Filename

This class is a placeholder for generated filenames, by default it is optional and CAN be overridden, however the
program has been structured in a way such that these names will be generated based on the step label. These should
only be used when the tool _requires_ a filename to output and you aren’t concerned what the filename should be. The
Filename DataType should NOT be used as an output.

Quickstart

from janis_core.types.common_data_types import Filename

w = WorkflowBuilder("my_workflow")

w.input("input_filename", Filename(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12. Data Types 51

https://en.wikipedia.org/wiki/FASTQ_format
https://en.wikipedia.org/wiki/FASTQ_format

Janis

4.12.30 Float

A float

Quickstart

from janis_core.types.common_data_types import Float

w = WorkflowBuilder("my_workflow")

w.input("input_float", Float(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.31 Gzip

A gzipped file

Quickstart

from janis_unix.data_types.gunzipped import Gunzipped

w = WorkflowBuilder("my_workflow")

w.input("input_gunzipped", Gunzipped(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.32 HtmlFile

A HTML file

Quickstart

from janis_unix.data_types.html import HtmlFile

w = WorkflowBuilder("my_workflow")

w.input("input_htmlfile", HtmlFile(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.33 IndexedBam

A Bam and bai as the secondary

52 Chapter 4. Contents

Janis

Secondary Files

• .bai

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.bam import BamBai

w = WorkflowBuilder("my_workflow")

w.input("input_bambai", BamBai(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.34 IndexedVCF

Variant Call Format:

The Variant Call Format (VCF) specifies the format of a text file used in bioinformatics for storing gene
sequence variations.

Documentation: https://samtools.github.io/hts-specs/VCFv4.3.pdf

Secondary Files

• .idx

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.data_types.vcf import VcfIdx

w = WorkflowBuilder("my_workflow")

w.input("input_vcfidx", VcfIdx(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.35 Integer

An integer

4.12. Data Types 53

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html
https://samtools.github.io/hts-specs/VCFv4.3.pdf
https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

Quickstart

from janis_core.types.common_data_types import Int

w = WorkflowBuilder("my_workflow")

w.input("input_int", Int(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.36 jsonFile

A JSON file file

Quickstart

from janis_unix.data_types.json import JsonFile

w = WorkflowBuilder("my_workflow")

w.input("input_jsonfile", JsonFile(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.37 KallistoIdx

A local file

Quickstart

from janis_bioinformatics.tools.kallisto.data_types import KallistoIdx

w = WorkflowBuilder("my_workflow")

w.input("input_kallistoidx", KallistoIdx(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.38 SAM

Tab-delimited text file that contains sequence alignment data

54 Chapter 4. Contents

Janis

Quickstart

from janis_bioinformatics.data_types.sam import Sam

w = WorkflowBuilder("my_workflow")

w.input("input_sam", Sam(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.39 Stdout

A local file

Quickstart

from janis_core.types.common_data_types import Stdout

w = WorkflowBuilder("my_workflow")

w.input("input_stdout", Stdout(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.40 String

A string

Quickstart

from janis_core.types.common_data_types import String

w = WorkflowBuilder("my_workflow")

w.input("input_string", String(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.41 TarFile

A tarfile, ending with .tar

4.12. Data Types 55

Janis

Quickstart

from janis_unix.data_types.tarfile import TarFile

w = WorkflowBuilder("my_workflow")

w.input("input_tarfile", TarFile(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.42 TextFile

A textfile, ending with .txt

Quickstart

from janis_unix.data_types.text import TextFile

w = WorkflowBuilder("my_workflow")

w.input("input_textfile", TextFile(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.43 tsv

A tab separated file

Quickstart

from janis_unix.data_types.tsv import Tsv

w = WorkflowBuilder("my_workflow")

w.input("input_tsv", Tsv(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.44 VCF

Variant Call Format:

The Variant Call Format (VCF) specifies the format of a text file used in bioinformatics for storing gene
sequence variations.

Documentation: https://samtools.github.io/hts-specs/VCFv4.3.pdf

56 Chapter 4. Contents

https://samtools.github.io/hts-specs/VCFv4.3.pdf

Janis

Quickstart

from janis_bioinformatics.data_types.vcf import Vcf

w = WorkflowBuilder("my_workflow")

w.input("input_vcf", Vcf(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.45 WhisperIdx

A local file

Secondary Files

• .whisper_idx.lut_long_dir

• .whisper_idx.lut_long_rc

• .whisper_idx.lut_short_dir

• .whisper_idx.lut_short_rc

• .whisper_idx.ref_seq_desc

• .whisper_idx.ref_seq_dir_pck

• .whisper_idx.ref_seq_rc_pck

• .whisper_idx.sa_dir

• .whisper_idx.sa_rc

Note: For more information, visit Secondary / Accessory Files

Quickstart

from janis_bioinformatics.tools.whisper.data_types import WhisperIdx

w = WorkflowBuilder("my_workflow")

w.input("input_whisperidx", WhisperIdx(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

4.12.46 Zip

A zip archive, ending with .zip

4.12. Data Types 57

https://janis.readthedocs.io/en/latest/references/secondaryfiles.html

Janis

Quickstart

from janis_unix.data_types.zipfile import ZipFile

w = WorkflowBuilder("my_workflow")

w.input("input_zipfile", ZipFile(optional=False))

...other workflow steps

This page was automatically generated on 2020-12-22.

This page was auto-generated on 22/12/2020. Please do not directly alter the contents of this page.

4.13 Templates

These templates are used to configure Cromwell / CWLTool broadly. For more information, visit Configuring Janis.

List of templates for janis-assistant:

4.13.1 Local

Template ID: local

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init local

or to find out more information
janis init local --help

OR you can insert the following lines into your template:

template:
id: local

Fields

Optional

ID Type Default Documentation

4.13.2 Molpath

Template ID: molpath

58 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/configuration.html#cromwell
https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

Template for Peter Mac molpath, the primary difference being the initial detatched submission sbatch is changed to .
/etc/profile.d/modules.sh; sbatch to handle the pipeline server.

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init molpath

or to find out more information
janis init molpath --help

OR you can insert the following lines into your template:

template:
id: molpath

Fields

Optional

ID Type Default Documentation
intermedi-
ate_execution_dir

<class ‘str’> Computation directory

container_dir <class ‘str’> /con-
fig/binaries/singularity/containers_devel/janis/

[OPTIONAL] Override the directory singularity con-
tainers are stored in

queues typ-
ing.Union[str,
typ-
ing.List[str]]

prod_med,prod The queue to submit jobs to

singular-
ity_version

<class ‘str’> 3.4.0 The version of Singularity to use on the cluster

send_job_emails<class ‘bool’> False Send Slurm job notifications using the provided email
catch_slurm_errors<class ‘bool’> True Fail the task if Slurm kills the job (eg: memory / time)
singular-
ity_build_instructions

<class ‘str’> Sensible default for PeterMac template

max_cores <class ‘int’> 40 Override maximum number of cores (default: 32)
max_ram <class ‘int’> 256 Override maximum ram (default 508 [GB])
max_workflow_time<class ‘int’> 20100 The walltime of the submitted workflow “brain”
ja-
nis_memory_mb

<class ‘int’>

email_format <class ‘str’> (null, “molpath”)
log_janis_job_id_to_stdout<class ‘bool’> False This is already logged to STDERR, but you can also

log the “Submitted batch job d” to stdout with this op-
tion set to true.

submis-
sion_sbatch

<class ‘str’> .
/etc/profile.d/modules.sh;
sbatch

Override the ‘sbatch’ command for the initial submis-
sion of janis to a compute node.

4.13. Templates 59

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

4.13.3 Pawsey

Template ID: pawsey

https://support.pawsey.org.au/documentation/display/US/Queue+Policies+and+Limits

Template for Pawsey. This submits Janis to the longq cluster. There is currently NO support for workflows that run
for longer than 4 days, though workflows can be resubmitted after this job dies.

It’s proposed that Janis assistant could resubmit itself

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init pawsey \
--container_dir <value>

or to find out more information
janis init pawsey --help

OR you can insert the following lines into your template:

template:
id: pawsey
container_dir: <value>

Fields

Required

ID Type Documentation
container_dir <class ‘str’> Location where to save and execute containers from

Optional

60 Chapter 4. Contents

https://support.pawsey.org.au/documentation/display/US/Queue+Policies+and+Limits
https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

ID Type Default Documentation
intermedi-
ate_execution_dir

<class ‘str’>

queues typing.Union[str,
typing.List[str]]

workq A single or list of queues that woork should be
submitted to

singular-
ity_version

<class ‘str’> 3.3.0 Version of singularity to load

catch_slurm_errors<class ‘bool’> True Catch Slurm errors (like OOM or walltime)
send_job_emails <class ‘bool’> True (requires JanisConfiguration.notifications.email

to be set) Send emails for mail types END
singular-
ity_build_instructions

<class ‘str’> singularity pull $image
docker://${docker}

Instructions for building singularity, it’s recom-
mended to not touch this setting.

max_cores <class ‘int’> 28 Maximum number of cores a task can request
max_ram <class ‘int’> 128 Maximum amount of ram (GB) that a task can

request
submis-
sion_queue

<class ‘str’> longq Queue to submit the janis ‘brain’ to

max_workflow_time<class ‘int’> 5700
ja-
nis_memory_mb

4.13.4 Pbs Singularity

Template ID: pbs_singularity

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init pbs_singularity

or to find out more information
janis init pbs_singularity --help

OR you can insert the following lines into your template:

template:
id: pbs_singularity

Fields

Optional

4.13. Templates 61

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

ID Type Default Documentation
con-
tainer_dir

<class ‘str’> Location where to save and execute containers to, this will also
look at the env variables ‘CWL_SINGULARITY_CACHE’,
‘SINGULARITY_TMPDIR’

intermedi-
ate_execution_dir

<class ‘str’>

queues typ-
ing.Union[str,
typ-
ing.List[str]]

A queue that work should be submitted to

mail_program Mail program to pipe email to, eg: ‘sendmail -t’
send_job_emails<class

‘bool’>
False (requires JanisConfiguration.notifications.email to be set)

Send emails for mail types END
catch_pbs_errors<class

‘bool’>
True

build_instructions<class ‘str’> singularity
pull $image
docker://${docker}

Instructions for building singularity, it’s recommended to not
touch this setting.

singular-
ity_load_instructions

Ensure singularity with this command executed in shell

max_cores Maximum number of cores a task can request
max_ram Maximum amount of ram (GB) that a task can request
max_duration Maximum amount of time in seconds (s) that a task can request
can_run_in_foreground<class

‘bool’>
True

run_in_background<class
‘bool’>

False

4.13.5 Pmac

Template ID: pmac

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init pmac

or to find out more information
janis init pmac --help

OR you can insert the following lines into your template:

template:
id: pmac

Fields

Optional

62 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

ID Type Default Documentation
intermedi-
ate_execution_dir

<class ‘str’> Computation directory

container_dir <class ‘str’> /con-
fig/binaries/singularity/containers_devel/janis/

[OPTIONAL] Override the directory singularity con-
tainers are stored in

queues typ-
ing.Union[str,
typ-
ing.List[str]]

prod_med,prod The queue to submit jobs to

singular-
ity_version

<class ‘str’> 3.4.0 The version of Singularity to use on the cluster

send_job_emails<class ‘bool’> False Send Slurm job notifications using the provided email
catch_slurm_errors<class ‘bool’> True Fail the task if Slurm kills the job (eg: memory / time)
singular-
ity_build_instructions

<class ‘str’> Sensible default for PeterMac template

max_cores <class ‘int’> 40 Override maximum number of cores (default: 32)
max_ram <class ‘int’> 256 Override maximum ram (default 508 [GB])
max_workflow_time<class ‘int’> 20100 The walltime of the submitted workflow “brain”
ja-
nis_memory_mb

<class ‘int’>

email_format <class ‘str’> (null, “molpath”)
log_janis_job_id_to_stdout<class ‘bool’> False This is already logged to STDERR, but you can also

log the “Submitted batch job d” to stdout with this op-
tion set to true.

submis-
sion_sbatch

<class ‘str’> sbatch

submis-
sion_node

typ-
ing.Union[str,
NoneType]

papr-expanded02, Request a specific node with ‘–nodelist <nodename>’

4.13.6 Singularity

Template ID: singularity

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init singularity \
--container_dir <value>

or to find out more information
janis init singularity --help

OR you can insert the following lines into your template:

template:
id: singularity
container_dir: <value>

4.13. Templates 63

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

Fields

Required

ID Type Documentation
container_dir <class ‘type’>

Optional

ID Type Default Documentation
singular-
ity_load_instructions

Ensure singularity with this command executed in
shell

con-
tainer_build_instructions

<class
‘str’>

singularity pull $image
docker://${docker}

Instructions for building singularity, it’s recom-
mended to not touch this setting.

mail_program <class
‘str’>

Mail program to pipe email to, eg: ‘sendmail -t’

4.13.7 Slurm Singularity

Template ID: slurm_singularity

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init slurm_singularity

or to find out more information
janis init slurm_singularity --help

OR you can insert the following lines into your template:

template:
id: slurm_singularity

Fields

Optional

64 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

ID Type Default Documentation
con-
tainer_dir

<class ‘str’> Location where to save and execute containers to, this will also
look at the env variables ‘CWL_SINGULARITY_CACHE’,
‘SINGULARITY_TMPDIR’

intermedi-
ate_execution_dir

<class ‘str’>

queues typ-
ing.Union[str,
typ-
ing.List[str]]

A single or list of queues that work should be submitted to

mail_program Mail program to pipe email to, eg: ‘sendmail -t’
send_job_emails<class

‘bool’>
False (requires JanisConfiguration.notifications.email to be set)

Send emails for mail types END
catch_slurm_errors<class

‘bool’>
True Catch Slurm errors (like OOM or walltime)

build_instructions<class ‘str’> singularity
pull $image
docker://${docker}

Instructions for building singularity, it’s recommended to not
touch this setting.

singular-
ity_load_instructions

Ensure singularity with this command executed in shell

max_cores Maximum number of cores a task can request
max_ram Maximum amount of ram (GB) that a task can request
max_duration Maximum amount of time in seconds (s) that a task can request
can_run_in_foreground<class

‘bool’>
True

run_in_background<class
‘bool’>

False

sbatch <class ‘str’> sbatch Override the sbatch command

4.13.8 Spartan

Template ID: spartan

https://dashboard.hpc.unimelb.edu.au/

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init spartan \
--container_dir <value>

or to find out more information
janis init spartan --help

OR you can insert the following lines into your template:

template:
id: spartan
container_dir: <value>

4.13. Templates 65

https://dashboard.hpc.unimelb.edu.au/
https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

Fields

Required

ID Type Documentation
container_dir <class ‘str’>

Optional

ID Type De-
fault

Documentation

intermedi-
ate_execution_dir

<class ‘str’> computation directory for intermediate files (defaults to
<exec>/execution OR <outputdir>/janis/execution)

queues typing.Union[str,
typing.List[str]]

phys-
ical

The queue to submit jobs to

singular-
ity_version

<class ‘str’> 3.5.3

send_job_emails <class ‘bool’> True Send SLURM job emails to the listed email address
catch_slurm_errors<class ‘bool’> True Fail the task if Slurm kills the job (eg: memory / time)
max_cores <class ‘int’> 32 Override maximum number of cores (default: 32)
max_ram <class ‘int’> 508 Override maximum ram (default 508 [GB])
submis-
sion_queue

<class ‘str’> phys-
ical

max_workflow_time<class ‘int’> 20100
ja-
nis_memory_mb

4.13.9 Wehi

Template ID: wehi

Quickstart

Take note below how to configure the template. This quickstart only includes the fields you absolutely require. This
will write a new configuration to ~/.janis.conf. See configuring janis for more information.

janis init wehi \
--container_dir <value>

or to find out more information
janis init wehi --help

OR you can insert the following lines into your template:

template:
id: wehi
container_dir: <value>

Fields

Required

66 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/configuration.html

Janis

ID Type Documentation
container_dir <class ‘str’>

Optional

ID Type De-
fault

Documentation

intermedi-
ate_execution_dir

<class ‘str’> A location where the execution should take place

queues typ-
ing.Union[typing.List[str],
str]

A single or list of queues that woork should be submitted to

singular-
ity_version

<class ‘str’> 3.4.1 Version of singularity to load

catch_pbs_errors <class ‘bool’> True Catch PBS errors (like OOM or walltime)
send_job_emails <class ‘bool’> True (requires JanisConfiguration.notifications.email to be set)

Send emails for mail types END
build_instructions Instructions for building singularity, it’s recommended to

not touch this setting.
max_cores <class ‘int’> 40 Maximum number of cores a task can request
max_ram <class ‘int’> 256 Maximum amount of ram (GB) that a task can request

This page was auto-generated on 22/12/2020. Please do not directly alter the contents of this page.

4.14 List of operators

This document is automatically generated, and contains the operators that Janis provides. They are split up by section
(Regular operators, Logical operators, Standard library) with the relevant Python import.

For more information about expressions and operators, visit Expressions in Janis.

4.14.1 Regular operators

Import with: from janis_core.operators.operator import *

• IndexOperator: Array[X], Int -> X

• AsStringOperator: X -> String

• AsBoolOperator: X -> Boolean

• AsIntOperator: X -> Int

• AsFloatOperator: X -> Float

4.14.2 Logical operators

Import with: from janis_core.operators.logical import *

• IsDefined: Any? -> Boolean

• If: (condition: Boolean, value_if_true: X, value_if_false: Y) ->
Union[X,Y]

4.14. List of operators 67

https://janis.readthedocs.io/en/latest/references/expressions.html

Janis

• NotOperator: Boolean -> Boolean

• AndOperator: Boolean, Boolean -> Boolean

• OrOperator: Boolean, Boolean -> Boolean

• EqualityOperator: Any, Any -> Boolean

• InequalityOperator: Any, Any -> Boolean

• GtOperator: Comparable, Comparable -> Boolean

• GteOperator: Comparable, Comparable -> Boolean

• LtOperator: Comparable, Comparable -> Boolean

• LteOperator: Comparable, Comparable -> Boolean

• AddOperator: Any, Any -> Any

• SubtractOperator: NumericType, NumericType -> NumericType

• MultiplyOperator: Numeric, NumericType -> NumericType

• DivideOperator: Numeric, NumericType -> NumericType

• FloorOperator: Numeric, NumericType -> Int

• CeilOperator: Numeric, NumericType -> Int

• RoundOperator: Numeric, NumericType -> Int

4.14.3 Standard library

Import with: from janis_core.operators.standard import *

• ReadContents: File -> String

• JoinOperator: Array[X], String -> String

• BasenameOperator: Union[File, Directory] -> String

• TransformOperator: Array[Array[X]] -> Array[Array[x]]

• LengthOperator: Array[X] -> Int

• FlattenOperator: Array[Array[X]] -> Array[x]

• ApplyPrefixOperator: String, Array[String] -> String

• FileSizeOperator: File -> Float

Returned in MB: Note that this does NOT include the reference files (yet)

• FirstOperator: Array[X?] -> X

• FilterNullOperator: Array[X?] -> Array[X]

This page was autogenerated.

4.15 Janis Shed and Toolboxes

One important component of Janis is the Toolbox, a set of command tools and workflows that are immediately available
to you. There are toolboxes for each domain, and we refer to the collection of these toolboxes as a “JanisShed”.

68 Chapter 4. Contents

Janis

In essence, they’re Python packages that Janis knows about and can use, currently there are two toolboxes:

• Unix (GitHub | Docs)

• Bioinformatics (GitHub | Docs)

4.15.1 Adding a tool

To add a tool to an existing toolbox, please refer to Adding a tool to a toolbox.

4.15.2 Custom Toolbox

You might have a set of tools that you you want to use in Janis (and take advantage of the other features), but may not
be allowed to publish these (and they’re container). In this case, we’d recommend you set up your own toolbox as a
Python module, and by setting a few entrypoints Janis will be able to pick up your tools.

We won’t discuss how to setup a Python package from scratch, but you might want to follow the existing toolbox repos
as a guide. Janis uses entrypoints to find existing toolboxes, here’s a great guide on Python Entry Points Explained.

Specifically, you’ll need to add the lines to your setup.py (replacing bioinformatics with a keyword to de-
scribe your extension, and janis_bioinformatics with your package name):

entry_points={
"janis.extension": ["bioinformatics=janis_bioinformatics"],
"janis.tools": ["bioinformatics=janis_bioinformatics.tools"],
"janis.types": ["bioinformatics=janis_bioinformatics.data_types"],

},

Currently, the Janis assistant doesn’t support configuring Cromwell or CWLTool to interact with private container
repositories. If this is something you need, I’d recommend reaching out on GitHub and Gitter, or translating your
output to run the workflow on your own engine.

4.15.3 Development Decisions

The design of the Janis tool repositories is a little strange, but we’ll discuss some of the design decisions we made to
give context.

We know that the underling command line for tools is pretty constant between versions, and we didn’t want to create
a new tool definition for each version for a few reasons:

• Easy to fix errors if code is in one place

• Makes pull requests easy when there’s minimal code changes

For groups of tools that might share common inputs (eg: GATK4), we wanted to declare a Gatk4Base, where we can
limit the memory of each GATK tool by inserting the parameter --java-options '-Xmx{memory}G'. Doing
this in the GATK base means it’s implemented in one location and ALL of the GATK tools get this functionality for
free.

For these reasons, janis-bioinformatics uses a class inheritance structure, but this sometimes makes for some awkward
imports.

1. Often the tool provider will declare some base, with some handy methods. For example, our Sam-
tools base command is ["samtools", SamtoolsCommand], so we’ll create an abstract method for
samtools_command that each tool must implement, and we can take care of the base command for them.
We’ll also declare a version of the base GATK with the version and containers method filled, we’ll see why in a
second.

4.15. Janis Shed and Toolboxes 69

https://github.com/PMCC-BioinformaticsCore/janis-unix
https://janis.readthedocs.io/en/latest/tools/unix/index.html
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics
https://janis.readthedocs.io/en/latest/tools/bioinformatics/index.html
https://janis.readthedocs.io/en/latest/tutorials/toolbox.html
https://amir.rachum.com/blog/2017/07/28/python-entry-points/
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/blob/master/janis_bioinformatics/tools/gatk4/gatk4toolbase.py

Janis

import abc

class SamToolsBase(abc.ABC):
@abc.abstractmethod
def samtools_command(self):

pass

def base_command(self):
return ["samtools", self.samtools_command()]

other handy methods

class SamTools_1_9:
def container(self):

return "quay.io/biocontainers/samtools:1.9--h8571acd_11"

def version(self):
return "1.9.0"

2. Now we can create our base definition for our class. Although a CommandTool usually requires a container
and version, we’ll use the one we declared earlier in the next step. Let’s create a rough definition for Samtools
Flagstat

class SamToolsFlagstatBase(SamToolsToolBase, ABC):
def samtools_command(self):

return "flagstat"

def inputs(self):
return [

ToolInput("bam", Bam(), position=10)
]

def outputs(self):
return [ToolOutput("out", Stdout(TextFile))]

3. We can combine our Samtools version and FlagstatBase to create a version of flagstat, eg:

class SamToolsFlagstat_1_9(SamTools_1_9, SamToolsFlagstatBase):
pass

Suggestions

See this GitHub issue for suggestions to improve the structure: GitHub: janis-bioinformatics/issues/92

4.16 Framework Documentation

There are two major components to constructing workflows, building tools and assembling workflows.

4.16.1 Workflow

Manages the connections between tools

70 Chapter 4. Contents

https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/issues/92

Janis

Declaration

There are two major ways to construct a workflow:

• Inline using the janis.WorkflowBuilder class,

• or Inheriting from the janis.Workflow class and implementing the required methods.

class janis.WorkflowBuilder(identifier: str = None, friendly_name: str = None, version: str
= None, metadata: janis_core.utils.metadata.WorkflowMetadata =
None, tool_provider: str = None, tool_module: str = None, doc: str
= None)

class janis.Workflow(**connections)

Advanced Workflows

Janis allows you to dynamically create workflows based on inputs. More information can be found on the Dynamic
Workflows page.

Overview

The janis.Workflow and janis.WorkflowBuilder classes exposes inputs, and manages the connections
between these inputs, tools and exposes some outputs.

A janis.WorkflowBuilder is the class used inline to declare workflows. The janis.Workflow class should
only be inherited through subclasses.

A workflow does not directly execute, but declares what inputs a janis.CommandTool should receive.

A representation of a workflow can be exported to cwl or wdl through the :method:‘janis.Workflow.translate()‘
function.

Translating

Currently Janis supports two translation targets:

1. Common Workflow Language

2. Workflow Description Language

Workflow.translate(translation: Union[str, janis_core.translationdeps.supportedtranslations.SupportedTranslation],
to_console=True, tool_to_console=False, to_disk=False, write_inputs_file=True,
with_docker=True, with_hints=False, with_resource_overrides=False, vali-
date=False, should_zip=True, export_path=’./{name}’, merge_resources=False,
hints=None, allow_null_if_not_optional=True, additional_inputs: Dict[KT,
VT] = None, max_cores=None, max_mem=None, max_duration=None, al-
low_empty_container=False, container_override: dict = None)

4.16. Framework Documentation 71

dynamicworkflows.html
dynamicworkflows.html
cwl.html
wdl.html

Janis

Structure of a workflow

A workflow has the following _nodes_:

• Inputs - janis.Workflow.input()

• Steps - janis.Workflow.step()

• Outputs - janis.Workflow.output()

Once an node has been added to the workflow, it may be referenced through dot-notation on the workflow. For this
reason, identifiers have certain naming restrictions. In the following examples we’re going to create an inline workflow
using the WorkflowBuilder class.

Creating an input

An input requires a unique identifier (string) and a janis.DataType.

Workflow.input(identifier: str, datatype: Union[Type[Union[str, float, int, bool]], ja-
nis_core.types.data_types.DataType, Type[janis_core.types.data_types.DataType]],
default: any = None, value: any = None, doc: Union[str, ja-
nis_core.tool.documentation.InputDocumentation, Dict[str, any]] = None)

Create an input node on a workflow :return:

The input node is returned from this function, and is also available as a property on a workflow (accessible through
dot-notation OR index notation).

import janis as j

w = j.WorkflowBuilder("myworkflow")
myInput = w.input("myInput", String)
myInput == w.myInput == w["myInput"] # True

Note: Default vs Value: The input

Creating a step

A step requires a unique identifier (string), a mapped tool (either a janis.CommandTool or janis.Workflow
called with it’s inputs), scattering information (if required).

Workflow.step(identifier: str, tool: janis_core.tool.tool.Tool, scatter:
Union[str, List[str], janis_core.utils.scatter.ScatterDescription] =
None, _foreach: Union[janis_core.operators.selectors.Selector,
List[janis_core.operators.selectors.Selector]] = None, when: Op-
tional[janis_core.operators.operator.Operator] = None, ignore_missing=False, doc:
str = None)

Construct a step on this workflow.

Parameters

• identifier – The identifier of the step, unique within the workflow.

• tool – The tool that should run for this step.

• scatter (Union[str, ScatterDescription]) – Indicate whether a scatter
should occur, on what, and how.

72 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#str

Janis

• when (Optional[Operator]) – An operator / condition that determines whether the
step should run

• ignore_missing – Don’t throw an error if required params are missing from this func-
tion

• _foreach – NB: this is unimplemented. Iterate for each value of this resolves list, where
you should use the “ForEachSelector” to select each value in this iterable.

Returns

Janis will throw an error if all the required inputs are not provided. You can provide the parameter
ignore_missing=True to the step function to skip this check.

from janis.unix.tools.echo import Echo

Echo has the required input: "inp": String
https://janis.readthedocs.io/en/latest/tools/unix/echo.html

echoStep = w.step("echoStep", Echo(inp=w.myInput))
echoStep == w.echoStep == w["echoStep"] # True

Creating an output

An output requires a unique identifier (string), an output source and an optional janis.DataType. If a data type
is provided, it is type-checked against the output source. Don’t be put off by the automatically generated interface for
the output method, it’s there to be exhaustive for the type definitions.

Here is the (simplified) method definition:

def output(
self,
identifier: str,
datatype: Optional[ParseableType] = None,
source: Union[Selector, ConnectionSource]=None # or List[Selector,

→˓ConnectionSource]
output_folder: Union[str, Selector, List[Union[str, Selector]]] = None,
output_name: Union[bool, str, Selector, ConnectionSource] = True, # let janis

→˓decide output name
extension: Optional[str] = None, # file extension if janis names file
doc: Union[str, OutputDocumentation] = None,

):

Workflow.output(identifier: str, datatype: Union[Type[Union[str, float, int, bool]], ja-
nis_core.types.data_types.DataType, Type[janis_core.types.data_types.DataType],
None] = None, source: Union[List[Union[janis_core.operators.selectors.Selector,
janis_core.graph.node.Node, janis_core.operators.selectors.StepOutputSelector,
Tuple[janis_core.graph.node.Node, str]]], janis_core.operators.selectors.Selector,
janis_core.graph.node.Node, janis_core.operators.selectors.StepOutputSelector,
Tuple[janis_core.graph.node.Node, str]] = None, out-
put_folder: Union[str, janis_core.operators.selectors.Selector,
List[Union[janis_core.operators.selectors.Selector, str]]] = None, output_name:
Union[bool, str, janis_core.operators.selectors.Selector, janis_core.graph.node.Node,
janis_core.operators.selectors.StepOutputSelector, Tuple[janis_core.graph.node.Node,
str]] = True, extension: Optional[str] = None, doc: Union[str, ja-
nis_core.tool.documentation.OutputDocumentation] = None)

Create an output on a workflow

4.16. Framework Documentation 73

Janis

Parameters

• identifier – The identifier for the output

• datatype – Optional data type of the output to check. This will be automatically inferred
if not provided.

• source – The source of the output, must be an output to a step node

• output_folder – Decides the output folder(s) where the output will reside. If a list
is passed, it represents a structure of nested directories, the first element being the root
directory.

– None (default): the assistant will copy to the root of the output directory

– Type[Selector]: will be resolved before the workflow is run, this means it may only de-
pend on the inputs

NB: If the output_source is an array, a “shard_n” will be appended to the output_name UN-
LESS the output_source also resolves to an array, which the assistant can unwrap multiple
dimensions of arrays ONLY if the number of elements in the output_scattered source and
the number of resolved elements is equal.

• output_name –

Decides the name of the output (without extension) that an output will have:

– True (default): the assistant will choose an output name based on output identifier (tag),

– None / False: the assistant will use the original filename (this might cause filename
conflicts)

– Type[Selector]: will be resolved before the workflow is run, this means it may only
depend on the inputs

NB: If the output_source is an array, a “shard_n” will be appended to the output_name UNLESS the output_source
also resolves to an array, which the assistant can unwrap multiple dimensions of arrays.

• extension – The extension to use if janis renames the output. By default, it will pull
the extension from the inherited data type (eg: CSV -> “.csv”), or it will attempt to pull the
extension from the file.

Returns janis.WorkflowOutputNode

You are unable to connect an input node directly to an output node, and an output node cannot be referenced as a step
input.

w.echoStep added to workflow
w.output("out", source=w.echoStep)

Subclassing Workflow

Instead of creating inline workflows, it’s possible to subclass janis.Workflow , implement the required methods
which allows a tool to have documentation automatically generated.

Required methods:

Workflow.id()→ str

Workflow.friendly_name()
Overriding this method is not required UNLESS you distribute your tool. Generating the docs will fail if your
tool does not provide a name.

74 Chapter 4. Contents

Janis

Returns A friendly name of your tool

Workflow.constructor()
A place to construct your workflows. This is called directly after initialisation. :return:

Within the constructor method, you have access to self to add inputs, steps and outputs.

OPTIONAL:

Workflow.bind_metadata()
A convenient place to add metadata about the tool. You are guaranteed that self.metadata will exist. It’s possible
to return a new instance of the ToolMetadata / WorkflowMetadata which will be rebound. This is usually called
after the initialiser, though it may be called multiple times. :return:

Examples

Inline example

The Echo tool has one inputs inp of type string, and one output out.

import janis as j
from janis.unix.tools.echo import Echo

w = j.WorkflowBuilder("my_workflow")
w.input("my_input", String)
echoStep = w.step("echo_step", Echo(inp=w.my_input))
w.output("out", source=w.echo_step)

Will print the CWL, input file and relevant tools to the console
w.translate("cwl", to_disk=False) # or "wdl"

Subclass example

import janis as j
from janis.unix.tools.echo import Echo

class MyWorkflow(j.Workflow):

def id(self):
return "my_workflow"

def friendly_name(self):
return "My workflow"

def constructor(self):
self.input("my_input", String)
echoStep = w.step("echo_step", Echo(inp=self.my_input))
self.output("out", source=self.echo_step)

optional

def metadata(self):
self.metadata.author = "Michael Franklin"

(continues on next page)

4.16. Framework Documentation 75

https://janis.readthedocs.io/en/latest/tools/unix/echo.html

Janis

(continued from previous page)

self.metadata.version = "v1.0.0"
self.metadata.documentation = "A tool that echos the input to standard_out

4.16.2 Command Tool

A class that wraps a CommandLineTool with named argument

Declaration

class janis.CommandTool(**connections)
A CommandTool is an interface between Janis and a program to be executed. Simply put, a CommandTool has
a name, a command, inputs, outputs and a container to run in.

This class can be inherited to created a CommandTool, else a CommandToolBuilder may be used.

class janis.CommandToolBuilder(tool: str, base_command: Union[str, List[str], None], in-
puts: List[janis_core.tool.commandtool.ToolInput], outputs:
List[janis_core.tool.commandtool.ToolOutput], container:
str, version: str, friendly_name: Optional[str] = None, ar-
guments: List[janis_core.tool.commandtool.ToolArgument]
= None, env_vars: Dict[KT, VT] = None, tool_module:
str = None, tool_provider: str = None, metadata: ja-
nis_core.utils.metadata.ToolMetadata = None, cpus:
Union[int, Callable[[Dict[str, Any]], int]] = None, mem-
ory: Union[int, Callable[[Dict[str, Any]], int]] = None, time:
Union[int, Callable[[Dict[str, Any]], int]] = None, disk:
Union[int, Callable[[Dict[str, Any]], int]] = None, directo-
ries_to_create: Union[janis_core.operators.selectors.Selector,
str, List[Union[janis_core.operators.selectors.Selector,
str]]] = None, files_to_create: Union[Dict[str,
Union[str, janis_core.operators.selectors.Selector]],
List[Tuple[Union[janis_core.operators.selectors.Selector,
str], Union[janis_core.operators.selectors.Selector, str]]]] =
None, doc: str = None)

__init__(tool: str, base_command: Union[str, List[str], None], in-
puts: List[janis_core.tool.commandtool.ToolInput], outputs:
List[janis_core.tool.commandtool.ToolOutput], container: str, version: str, friendly_name:
Optional[str] = None, arguments: List[janis_core.tool.commandtool.ToolArgument]
= None, env_vars: Dict[KT, VT] = None, tool_module: str = None,
tool_provider: str = None, metadata: janis_core.utils.metadata.ToolMetadata
= None, cpus: Union[int, Callable[[Dict[str, Any]], int]] = None, mem-
ory: Union[int, Callable[[Dict[str, Any]], int]] = None, time: Union[int,
Callable[[Dict[str, Any]], int]] = None, disk: Union[int, Callable[[Dict[str, Any]],
int]] = None, directories_to_create: Union[janis_core.operators.selectors.Selector,
str, List[Union[janis_core.operators.selectors.Selector, str]]] = None,
files_to_create: Union[Dict[str, Union[str, janis_core.operators.selectors.Selector]],
List[Tuple[Union[janis_core.operators.selectors.Selector, str],
Union[janis_core.operators.selectors.Selector, str]]]] = None, doc: str = None)

Builder for a CommandTool.

Parameters

76 Chapter 4. Contents

Janis

• tool – Unique identifier of the tool

• friendly_name – A user friendly name of your tool (must be implemented for gener-
ated docs)

• base_command – The command of the tool to execute, usually the tool name or path
and not related to any inputs.

• inputs – A list of named tool inputs that will be used to create the command line.

• outputs – A list of named outputs of the tool; a ToolOutput declares how the output
is captured.

• arguments – A list of arguments that will be used to create the command line.

• container – A link to an OCI compliant container accessible by the engine.

• version – Version of the tool.

• env_vars – A dictionary of environment variables that should be defined within the
container.

• tool_module – Unix, bioinformatics, etc.

• tool_provider – The manafacturer of the tool, eg: Illumina, Samtools

• metadata – Metadata object describing the Janis tool interface

• cpu – An integer, or function that takes a dictionary of hints and returns an integer in
‘number of CPUs’

• memory – An integer, or function that takes a dictionary of hints and returns an integer in
‘GBs’

• time – An integer, or function that takes a dictionary of hints and returns an integer in
‘seconds’

• disk – An integer, or function that takes a dictionary of hints and returns an integer in
‘GBs’

• directories_to_create – A list of directories to create, accepts an expression (se-
lector / operator)

• files_to_create – Either a List of tuples [path: Selector, contents: Selector],

or a dictionary {“path”: contents}. The list of tuples allows you to use an operator for the pathname :param
doc: Documentation string

Overview

A janis.CommandTool is the programmatic interface between a set of inputs, how these inputs bind on the Com-
mand Line to call the tool, and how to collect the outputs. It would be rare that you should directly instantiate
CommandTool, instead you should subclass and and override the methods you need as declared below.

Like a workflow, there are two methods to declare a command tool:

• Use the CommandToolBuilder class

• Inherit from the CommandTool class,

4.16. Framework Documentation 77

Janis

Template

CommandToolBuilder:

import janis_core as j

ToolName = j.CommandToolBuilder(
tool: str="toolname",
base_command=["base", "command"],
inputs: List[j.ToolInput]=[],
outputs: List[j.ToolOutput]=[],
container="container/name:version",
version="version",
friendly_name=None,
arguments=None,
env_vars=None,
tool_module=None,
tool_provider=None,
metadata: ToolMetadata=j.ToolMetadata(),
cpu: Union[int, Callable[[Dict[str, Any]], int]]=None,
memory: Union[int, Callable[[Dict[str, Any]], int]]=None,

)

This is equivalent to the inherited template:

from typing import List, Optional, Union
import janis_core as j

class ToolName(j.CommandTool):
def tool(self) -> str:

return "toolname"

def base_command(self) -> Optional[Union[str, List[str]]]:
pass

def inputs(self) -> List[j.ToolInput]:
return []

def outputs(self) -> List[j.ToolOutput]:
return []

def container(self) -> str:
return ""

def version(self) -> str:
pass

optional

def arguments(self) -> List[j.ToolArgument]:
return []

def env_vars(self) -> Optional[Dict[str, Union[str, Selector]]]:
return {}

def friendly_name(self) -> str:
pass

(continues on next page)

78 Chapter 4. Contents

Janis

(continued from previous page)

def tool_module(self) -> str:
pass

def tool_provider(self) -> str:
pass

def cpu(self, hints: Dict) -> int:
pass

def memory(self, hints: Dict) -> int:
pass

def bind_metadata(self) -> j.ToolMetadata:
pass

Structure

A new tool definition must subclass the janis.CommandTool class and implement the required abstract methods:

• janis.CommandTool.tool(self) -> str: Unique identifier of the tool

• janis.CommandTool.base_command(self) -> str: The command of the tool to execute, usually
the tool name or path and not related to any inputs.

• janis.CommandTool.inputs(self) -> List[janis.ToolInput]: A list of named tool inputs
that will be used to create the command line.

• janis.CommandTool.arguments(self) -> List[janis.ToolArgument]: A list of argu-
ments that will be used to create the command line.

• janis.CommandTool.outputs(self) -> List[janis.ToolOutput]: A list of named outputs
of the tool; a ToolOutput declares how the output is captured.

• janis.CommandTool.container(self): A link to an OCI compliant container accessible by the en-
gine. Previously, docker().

• janis.CommandTool.version(self): Version of the tool.

• janis.CommandTool.env_vars(self) -> Optional[Dict[str, Union[str,
Selector]]]: A dictionary of environment variables that should be defined within the container.

To better categorise your tool, you can additionally implement the following methods:

• janis.Tool.friendly_name(self): A user friendly name of your tool (must be implemented for gen-
erated docs)

• janis.Tool.tool_module(self): Unix, bioinformatics, etc.

• janis.Tool.tool_provider(self): The manafacturer of the tool, eg: Illumina, Samtools

4.16. Framework Documentation 79

Janis

Tool Input

class janis.ToolInput(tag: str, input_type: Union[Type[Union[str, float,
int, bool]], janis_core.types.data_types.DataType,
Type[janis_core.types.data_types.DataType]], position: Optional[int] =
None, prefix: Optional[str] = None, separate_value_from_prefix: bool =
None, prefix_applies_to_all_elements: bool = None, presents_as: str =
None, secondaries_present_as: Dict[str, str] = None, separator: str = None,
shell_quote: bool = None, localise_file: bool = None, default: Any = None,
doc: Union[str, janis_core.tool.documentation.InputDocumentation, None] =
None)

__init__(tag: str, input_type: Union[Type[Union[str, float, int, bool]], ja-
nis_core.types.data_types.DataType, Type[janis_core.types.data_types.DataType]], po-
sition: Optional[int] = None, prefix: Optional[str] = None, separate_value_from_prefix:
bool = None, prefix_applies_to_all_elements: bool = None, presents_as: str = None,
secondaries_present_as: Dict[str, str] = None, separator: str = None, shell_quote:
bool = None, localise_file: bool = None, default: Any = None, doc: Union[str, ja-
nis_core.tool.documentation.InputDocumentation, None] = None)

A ToolInput represents an input to a tool, with parameters that allow it to be bound on the command
line. The ToolInput must have either a position or prefix set to be bound onto the command line.

Parameters

• tag – The identifier of the input (unique to inputs and outputs of a tool)

• input_type (janis.ParseableType) – The data type that this input accepts

• position – The position of the input to be applied. (Default = 0, after the
base_command).

• prefix – The prefix to be appended before the element. (By default, a space will also be
applied, see separate_value_from_prefix for more information)

• separate_value_from_prefix – (Default: True) Add a space between the prefix
and value when True.

• prefix_applies_to_all_elements – Applies the prefix to each element of the
array (Array inputs only)

• shell_quote – Stops shell quotes from being applied in all circumstances, useful when
joining multiple commands together.

• separator – The separator between each element of an array (defaults to ‘ ‘)

• localise_file – Ensures that the file(s) are localised into the execution directory.

• default – The default value to be applied if the input is not defined.

• doc – Documentation string for the ToolInput, this is used to generate the tool documen-
tation and provide

hints to the user.

Note: A ToolInput (and ToolArgument) must have either a position AND / OR prefix to be bound onto the
command line.

• The prefix is a string that precedes the inputted value. By default the prefix is separated by a space, however
this can be removed with separate_value_from_prefix=False.

80 Chapter 4. Contents

Janis

• The position represents the order of how arguments are bound onto the command line. Lower numbers get
a higher priority, not providing a number will default to 0.

• prefix_applies_to_all_elements applies the prefix to each element in an array (only applicable for
array inputs).

• The localise_file attribute places the file input within the execution directory.

• presents_as is a mechanism for overriding the name to localise to. The localise_file parameter
MUST be set to True for presents_as

• secondaries_present_as is a mechanism for overriding the format of secondary files.
localise_file does NOT need to be set for this functionality to work. In CWL, this relies on
https://github.com/common-workflow-language/cwltool/pull/1233

Tool Argument

class janis.ToolArgument(value: Any, prefix: Optional[str] = None, position: Optional[int]
= 0, separate_value_from_prefix=None, doc: Union[str, ja-
nis_core.tool.documentation.DocumentationMeta, None] = None,
shell_quote: bool = None)

__init__(value: Any, prefix: Optional[str] = None, position: Op-
tional[int] = 0, separate_value_from_prefix=None, doc: Union[str, ja-
nis_core.tool.documentation.DocumentationMeta, None] = None, shell_quote: bool =
None)

A ToolArgument is a CLI parameter that cannot be override (at runtime). The value can

Parameters

• value (str | janis.InputSelector | janis.StringFormatter) –

• position – The position of the input to be applied. (Default = 0, after the
base_command).

• prefix – The prefix to be appended before the element. (By default, a space will also be
applied, see separate_value_from_prefix for more information)

• separate_value_from_prefix – (Default: True) Add a space between the prefix
and value when True.

• doc – Documentation string for the argument, this is used to generate the tool documen-
tation and provide

• shell_quote – Stops shell quotes from being applied in all circumstances, useful when
joining multiple commands together.

Tool Output

class janis.ToolOutput(tag: str, output_type: Union[Type[Union[str, float,
int, bool]], janis_core.types.data_types.DataType,
Type[janis_core.types.data_types.DataType]], selector:
Union[janis_core.operators.selectors.Selector, str, None] = None,
presents_as: str = None, secondaries_present_as: Dict[str, str] = None, doc:
Union[str, janis_core.tool.documentation.OutputDocumentation, None] =
None, glob: Union[janis_core.operators.selectors.Selector, str, None] =
None, _skip_output_quality_check=False)

4.16. Framework Documentation 81

https://github.com/common-workflow-language/cwltool/pull/1233

Janis

__init__(tag: str, output_type: Union[Type[Union[str, float, int, bool]], ja-
nis_core.types.data_types.DataType, Type[janis_core.types.data_types.DataType]],
selector: Union[janis_core.operators.selectors.Selector, str, None] = None,
presents_as: str = None, secondaries_present_as: Dict[str, str] = None,
doc: Union[str, janis_core.tool.documentation.OutputDocumentation, None] =
None, glob: Union[janis_core.operators.selectors.Selector, str, None] = None,
_skip_output_quality_check=False)

A ToolOutput instructs the the engine how to collect an output and how it may be referenced in a workflow.

Parameters

• tag – The identifier of a output, must be unique in the inputs and outputs.

• output_type – The type of output that is being collected.

• selector – How to collect this output, can accept any janis.Selector.

• glob – (DEPRECATED) An alias for selector

• doc – Documentation on what the output is, used to generate docs.

• _skip_output_quality_check – DO NOT USE THIS PARAMETER, it’s a scape-
goat for parsing CWL ExpressionTools when an cwl.output.json is generated

4.16.3 Python Tool

Note: Available in v0.9.0 and later

A PythonTool is a Janis mechanism for running arbitrary Python code inside a container.

class janis.PythonTool(**connections)

static code_block(**kwargs)→ Dict[str, Any]
This code block must be 100% self contained. All libraries and functions must be imported and declared
from within this block. :param kwargs: :return:

How to build my own Tool

• Create a class that inherits from PythonTool,

• The PythonTool uses the code signature for code_block to determine the inputs. This means you must use
Python type annotations.

• The default image is python:3.8.1, this is overridable by overriding the container method.

Extra notes about the code_block:

• It must be totally self contained (including ALL imports and functions)

• The only information you have available is those that you specify within your method.

• Annotation notes:

– You can annotate with regular Python types, like: str or int

– You can annotate optionality with typings, like: Optional[str] or List[Optional[str]]

– Do NOT use Array(String), use List[String] instead.

82 Chapter 4. Contents

Janis

– Annotating with Janis types (like String, File, BamBai, etc) might cause issues with your type hints
in an IDE.

• A File type will be presented to your function as a string. You will need to open the file within your function.

• You must return a dictionary with keys corresponding to the outputs of your tool. - File outputs should be
presented as a string, and will be coerced to a File / Directory later.

• Do NOT use j.$TYPE annotations (prefixed with j., eg: j.File or j.String) as annotations as this will
fail at runtime.

from janis_core import PythonTool, TOutput, File
from typing import Dict, Optional, List, Any

class MyPythonTool(PythonTool):
@staticmethod
def code_block(in_string: str, in_file: File, in_integer: int) -> Dict[str, Any]:

from shutil import copyfile

copyfile(in_file, "./out.file")

return {
"myout": in_string + "-appended!",
"myfileout": "out.file",
"myinteger": in_integer + 1

}

def outputs(self) -> List[TOutput]:
return [

TOutput("myout", str),
TOutput("myfileout", File),
TOutput("myinteger", int)

]

def id(self) -> str:
return "MyPythonTool"

def version(self):
return "v0.1.0"

How to include a File inside your container

Use the type annotation File, and open it yourself, for example:

from janis_core import PythonTool, TOutput, File
from typing import Dict, Optional, List, Any

class CatPythonTool(PythonTool):
@staticmethod
def code_block(my_file: File) -> Dict[str, Any]:

with open(my_file, "r") as f:
return {

"out": f.read()
}

def outputs(self) -> List[TOutput]:

(continues on next page)

4.16. Framework Documentation 83

Janis

(continued from previous page)

return [
TOutput("out", str)

]

How to include an Array of strings inside my container

from janis_core import PythonTool, TOutput, File
from typing import Dict, Optional, List, Any

class JoinStrings(PythonTool):
@staticmethod
def code_block(my_strings: List[str], separator: str=",") -> Dict[str, Any]:

return {"out": separator.join(my_strings)}

def outputs(self) -> List[TOutput]:
return [

TOutput("out", str)
]

4.16.4 Code Tool

Note: BETA: Available in v0.9.0 and later

A code tool is an abstract concept in Janis, that aims to execute arbitrary code inside a container.

Currently there is only one type of CodeTool:

• janis.PythonTool

The aim is to make it simpler to perform basic steps within your container, for example say I want to perform some
basic processing of a file that isn’t trivial in Janis (and hence CWL / WDL) but is in a programming language, Janis
gives you the functionality to make this possible.

Creating a new code tool type

This process is designed to be fairly simple, but there are a few important notes:

• Your tool must log ONLY a JSON string to stdout (this will get parsed later)

• The prepared_script block must return a string that will get written to a file within the container to
be executed that can accept inputs via command line. Within the PythonTool, you’ll see that a parser (by
argparse) is generated in this method.

import janis_core as j

class LanguageTool(CodeTool):
You might leave these fields to be overriden by the user
def inputs(self) -> List[TInput]:

pass

(continues on next page)

84 Chapter 4. Contents

Janis

(continued from previous page)

def outputs(self) -> List[TOutput]:
pass

def base_command(self):
pass

def script_name(self):
pass

def container(self):
pass

def prepared_script(self):
pass

def id(self) -> str:
pass

def version(self):
pass

4.16.5 Types

Janis has a typing system that allows pipeline developers to be confident when they connect components together. In
Janis, there are 6 fundamental types, all of which are inheritable. These fundamental types require an equivalent in all
translation targets (eg: janis.String must be to a string CWL and WDL type).

• janis.File

• janis.String

• janis.Int

• janis.Float

• janis.Boolean

• janis.Directory

To provide greater context to your tools and workflows, you can create a custom type that inherits from all of these
fundamental types.

Often you can just use the uninstantiated type for annotation. All types can be made optional by instantiating the
type wth (optional=True). By default types are required (non-optional) and inputs that have a default are made
optional.

Patterns

The janis-patterns repository has an example of how python types relate to Janis types: https://github.com/
PMCC-BioinformaticsCore/janis-patterns/blob/master/types/pythontypes.py

File

A file in Janis is an object, and not a path. By annotating your type as a file, the execution engine will make the ref-
erenced file available within your execution environment. You should simply consider that the File type is a reference
to some arbitrary place on disk and not in a predictable location.

4.16. Framework Documentation 85

https://github.com/PMCC-BioinformaticsCore/janis-patterns/blob/master/types/pythontypes.py
https://github.com/PMCC-BioinformaticsCore/janis-patterns/blob/master/types/pythontypes.py

Janis

Most often you will not directly instantiate a File as you’ll use some domain specific file type (such as TarFile or
Bam‘).

class janis.File(optional=False, extension=None, alternate_extensions: Set[str] = None)

If you do not correctly annotate your type to be a janis.File (with appropriate index files), it may not be localised
into your execution environment.

Secondary / Accessory files

Janis inherits the concept of secondary files from the Common Workflow Language. When creating a subclass of a
File, you should include the

@staticmethod
def secondary_files() -> Optional[List[str]]:

return None

And return a list of strings with the following syntax:

• If string begins with one or more caret ^ characters, for each caret, remove the last file extension from the path
(the last period . and all following characters). If there are no file extensions, the path is unchanged.

• Append the remainder of the string to the end of the file path.

Note: It’s important that if you’re directly instantiating the File class, or subclassing and calling super().
__init__ that you MUST include the expected file extension, otherwise secondary files will be not correctly col-
lected in WDL.

Typing system

The typing system allows for you to pass an inherited type to one of its super classes. This means that if your type
inherits from File, you can safely pass your inherited type. When passing inherited file types with secondary files,
Janis does it’s best to take the subset of files from the receiving type. It’s up to the developer’s of new data types to
ensure that all secondary files are included from each subtype.

String

A String is a type in Janis. When annotating a type, you can also use the inbuilt Python str, which will be turned
into a required (non-optional) janis.String.

class janis.String(optional=False)

The janis.Filename class is a special type that inherits from string which allows for automatic filename genera-
tion.

Int

An Int is a type in Janis. When annotating a type, you can also use the inbuilt Python int, which will be turned into
a required (non-optional) janis.Int.

class janis.Int(optional=False)

86 Chapter 4. Contents

Janis

The range of an integer is the minimum of the specification you use, here are some values:

Language Min Max
CWL -2^32 2^32
WDL -2^63 2^63
Python → sys.maxsize
JSON * *
YAML * *

* - JSON and YAML max ranges may depend on your parser.

Float

A Float is a type in Janis. When annotating a type, you can also use the inbuilt Python float, which will be turned
into a required (non-optional) janis.Float.

class janis.Float(optional=False)

The range of an integer is the minimum of the specification you use, here are some values:

Language Min Max
CWL → finite 32-bit IEEE-754
WDL → finite 64-bit IEEE-754
Python → sys.float_info
JSON * *
YAML * *

* - JSON and YAML max ranges may depend on your parser.

Boolean

A Boolean is a type in Janis. When annotating a type, you can also use the inbuilt Python bool, which will be
turned into a required (non-optional) janis.Boolean.

class janis.Boolean(optional=False)

Filename

A Filename is an inherited type in Janis with the purpose to stand in for filename generation. By default it is always
optional, and there are a number of ways you can customise it.

class janis.Filename(prefix=’generated’, suffix=None, extension: str = None, optional=None)

• Prefix (defaults to “generated”)

• Suffix

• Guid (defaults to evaluating str(uuid.uuid1()) Overridable if you want a similar structure to your output
files + some extension.

• Extension (this is very important if collecting output files), you must include the period (.).

Format: $prefix-$guid-$suffix.bam

The intention was for each run and scatter to have a different generated value for each instance of generated filename.
However, at the moment technical difficulties has delayed this implementation.

4.16. Framework Documentation 87

Janis

Features:

4.16.6 Expressions

Note: This feature is only available in Janis-Core v0.9.x and above.

Expressions in Janis refer to a set of features that improve how you can manipulate and massage inputs into an
appropriate structure.

In this set of changes, we consider two important types:

• janis.Selector A placeholder used for selecting other values (without modification).

• janis.Operator Analogous to a function call.

To remain abstract, Janis builds up a set of these operations, all of which have a CWL and WDL analogue. We’ll talk
more about how these are converted later.

Selectors

As initially described, a Selector can be seen as a _placeholder_ for referencing other values. Some common types of
selectors:

• InputSelector - references the input by a string

– MemorySelector - Special InputSelector for selecting memory in GBs

– CpuSelector - Special InputSelector for getting number of CPUs that a task will request.

• InputNodeSelector - specifically references the input node, only available in a workflow

• StepOutputSelector - references the output of a step, only available in a workflow.

• WildcardSelector - Collect a number of files with a pattern. Currently the use of this pattern isn’t well defined,
but is passed without modification to CWL and WDL. Only available on a ToolOutput.

Selectors participate in the typesystem, and as such have a dynamic return type.

Operators

Operators are equivalent to the concept of functions. They take a set of inputs, and generate some output. Operators
inherit from selectors, The inputs and outputs are typed, and hence operators and selectors particpate in the typing
system.

Both are more flexible with the types that they provide, though some selectors (notable InputSelector) may be unable
to give a definite type.

In terms of their implementation, it’s the operator’s responsibility to convert itself to CWL and WDL. There will be
an example below.

In some cases (where possible), we’ve overridden the standard python operators to give the Janis analogue.

• __neg__

• __and__ NB: this is the bitwise AND and not the logical and.

• __rand__ NB: similar to __and__

• __or__ NB: this is the bitwise OR and not the logical or.

88 Chapter 4. Contents

https://docs.python.org/3/library/operator.html#operator.and_
https://docs.python.org/3/library/operator.html#operator.or_

Janis

• __ror__

• __add__

• __radd__

• __sub__

• __rsub__

• __mul__

• __rmul__

• __truediv__

• __rtruediv__

• __eq__

• __ne__

• __gt__

• __ge__

• __lt__

• __le__

• __len__

• __getitem__

• to_string_formatter()

• as_str()

• as_bool()

• as_int()

• op_and()

• op_or()

• basename()

List of operators

Note: See the List of operators guide for more information.

Example usage

An operator’s usage should be as you’d expect, let’s see an example use of the FileSizeOperator, highlighting:

• Import the operator from janis_core.operators.standard

• Applying the operation directly on the‘‘echo.inp‘‘ step input field.

• Converting the transformed input to a string with .as_str()

4.16. Framework Documentation 89

https://janis.readthedocs.io/en/latest/references/listoperators.html

Janis

from janis_core import WorkflowBuilder, File
from janis_core.operators.standard import FileSizeOperator
from janis_unix.tools import Echo

w = WorkflowBuilder("sizetest")
w.input("fileInp", File)

w.step("print",
Echo(inp=(FileSizeOperator(w.fileInp) * 1024).as_str())

)
w.output("out", source=w.print)

Before we go any further, let’s look at the WDL and CWL translations:

WDL

We can see how the step input expression is converted directly inline.

version development

import "tools/echo.wdl" as E

workflow sizetest {
input {
File fileInp

}
call E.echo as print {
input:

inp=((1024 * size(fileInp, "MB")))
}
output {
File out = print.out

}
}

CWL

The CWL translation is a little bit trickier due to the way scope of valueFrom expressions. We can see that our
variable is passed into the scope (prefixed by an underscore), and then the valueFrom contains the expression that we
produced - this is the value that the print step will see.

#!/usr/bin/env cwl-runner
class: Workflow
cwlVersion: v1.0

requirements:
InlineJavascriptRequirement: {}
StepInputExpressionRequirement: {}

inputs:
inp:

type: File

outputs:
(continues on next page)

90 Chapter 4. Contents

Janis

(continued from previous page)

out:
type: File
outputSource: print/out

steps:
print:
label: Echo
in:

_print_inp_fileInp:
source: fileInp

inp:
valueFrom: $(String((1024 * (inputs._print_inp_fileInp.size / 1048576))))

run: tools/echo.cwl
out:
- out

id: sizetest

Implementation notes

Let’s first look at the implementation of the janis_core.operators.standard.FileSizeOperator:

For example, we could consider the implementation of the FileSizeOperator:

class FileSizeOperator(Operator):
"""
Returned in MB: Note that this does NOT include the reference files (yet)
"""

def argtypes(self):
return [File()]

def returntype(self):
return Float

def __str__(self):
f = self.args[0]
return f"file_size({f})"

def to_wdl(self, unwrap_operator, *args):
f = unwrap_operator(self.args[0])
return f'size({f}, "MB")'

def to_cwl(self, unwrap_operator, *args):
f = unwrap_operator(self.args[0])
return f"({f}.size / 1048576)"

• The argtypes returns an array of the types of the arguments that we expect. FileSizeOperator only expects one
arg of a File type

• The ReturnType is a singular field which depicts the return type of the function.

• to_wdl is the function that builds our WDL function, it calls unwrap_operator on the argument (to ensure
that any tokens are unwrapped), and then builds the command line using string interpolation.

• to_cwl operates exactly the same, except we use ES5 javascript to build our operation. The / 1048576 is
to ensure that the value we receive in Bytes is converted to Megabytes (MB).

4.16. Framework Documentation 91

Janis

PROPOSED

In order to keep the current spec scoped, there is additional functionality that is planned:

• Using operators to build up the CPU, Memory and future resource values

• Custom python operations

4.16.7 Selectors and StringFormatting

Methods to reference or transform inputs

Overview

A janis.Selector is an abstract class that allows a workflow author to reference or transform a value. There are
3 main forms of selectors:

• janis.InputSelector - Used for selecting inputs

• janis.WildcardSelector - Used for collecting outputs

• janis.StringFormatter - Constructing or transforming strings

InputSelector

Declaration

class janis.InputSelector(input_to_select, remove_file_extension=None, type_hint=<class ’ja-
nis_core.types.common_data_types.File’>, **kwargs)

Overview

An InputSelector is used to get the value of an input at runtime. This has a number of use cases:

• Collecting outputs through the glob= field.

• Constructing a janis.StringFormatter from existing inputs

These inputs are checked for validity at runtime. In CWL, defaults are propagated by definition in the language spec,
in WDL this propagation is handled by janis.

Example

The following code will use the value of the outputFilename to find the corresponding output to bamOutput.
Additionally as the data_type BamBai has a secondary file, in WDL janis will automatically construct a second output
corresponding to the .bai secondary (called bamOutput_bai and modify the contents of the InputSelector
to correctly glob this index file.

def outputs(self):
return [

ToolOutput("bamOutput", BamBai, glob=InputSelector("outputFilename"))
]

92 Chapter 4. Contents

Janis

WildcardSelector

Declaration

class janis.WildcardSelector(wildcard, select_first=False)

Overview

A wildcard selector is used to glob a collection of files for an output where an InputSelector is not appropriate.
Note that if an * (asterisk | star) bind is used to collect files, the output type should be an array.

Example

The following example will demonstrate how to get all the files ending on .csv within the execution directory.

def outputs(self):
return [

ToolOutput("metrics", Array(Csv), glob=WildcardSelector("*.csv"))
]

StringFormatting

Declaration

class janis.StringFormatter(format: str, **kwargs)

Overview

A StringFormatter is used to allow inputs or other values to be inserted at runtime into a string tem-
plate. A StringFormatter can be concatenated with Python strings, another StringFormatter or an
InputSelector.

The string "{placeholdername}" can be used within a string format, where placeholdername is a kwarg
passed to the StringFormatter with the intended selector or value.

The placeholder names must be valid Python variable names (as they’re passed as kwargs). See the String formatter
tests for more examples.

Example

• Initialisation

StringFormatter("Hello, {name}", name=InputSelector("username"))

• Concatenation

"Hello, " + InputSelector("username") InputSelector("greeting") +
StringFormatter(", {name}", name=InputSelector("username"))

4.16. Framework Documentation 93

https://github.com/PMCC-BioinformaticsCore/janis-core/blob/master/janis_core/tests/test_stringbuilder.py
https://github.com/PMCC-BioinformaticsCore/janis-core/blob/master/janis_core/tests/test_stringbuilder.py

Janis

4.16.8 Scattering

Improving workflow performance with embarrassingly parallel tasks

Janis support scattering by field when constructing a janis.Workflow.step() through the
scatter=Union[str, janis.ScatterDescription] parameter.

class janis.ScatterDescription(fields: List[str], method: janis_core.utils.scatter.ScatterMethod
= None, labels: Union[janis_core.operators.selectors.Selector,
List[str]] = None)

Class for keeping track of scatter information

__init__(fields: List[str], method: janis_core.utils.scatter.ScatterMethod = None, labels:
Union[janis_core.operators.selectors.Selector, List[str]] = None)

Parameters

• fields – The fields of the the tool that should be scattered on.

• method (ScatterMethod) – The method that should be used to scatter the two arrays

• labels – (JANIS ONLY) -

janis.ScatterMethods
alias of janis_core.utils.scatter.ScatterMethod

Simple scatter

To simply scatter by a single field, you can simple provide the scatter="fieldname" parameter to the janis.
Workflow.step() method.

For example, let’s presume you have the tool MyTool which accepts a single string input on the myToolInput
field.

w = Workflow("mywf")
w.input("arrayInp", Array(String))
w.step("stp", MyTool(inp1=w.arrayInp), scatter="inp1")
equivalent to
w.step("stp", MyTool(inp1=w.arrayInp), scatter=ScatterDescription(fields=["inp1"]))

Scattering by more than one field

Janis supports scattering by multiple fields by the dot and scatter methods, you will need to use a janis.
ScatterDescription and janis.ScatterMethods:

Example:

from janis import ScatterDescription, ScatterMethods
OR
from janis_core import ScatterDescription, ScatterMethods

w = Workflow("mywf")
w.input("arrayInp1", Array(String))
w.input("arrayInp2", Array(String))
w.step(

"stp",
MyTool(inp1=w.arrayInp1, inp2=w.arrayInp2),
scatter=ScatterDescription(fields=["inp1", "inp2"], method=ScatterMethods.dot)

)

94 Chapter 4. Contents

Janis

4.17 Janis Prepare

• # * = - .

prepare is functionality of Janis to improve the process of running pipelines. Specifically, Janis prepare will perform
a few key actions:

• Downloads reference datasets

• Performs simple transforms data into the correct format (eg: VCF -> gVCF)

• Checks quality of some inputs:

– for example, contigs in a bed file match what’s in a declared reference

Note: Prepare only works with Janis pipelines

4.17.1 Quickstart

The janis prepare command line is almost exactly the same as the janis run. You should supply it with
inputs (either through an inputs yaml or on the command line) and any other configuration options. You must supply
an output directory (or declare an output_dir in your janis config), the job file and a run script is written to this
directory. The job file is also always written to stdout.

For example:

Write inputs file
cat <<EOT >> inputs.yaml
sampleName: NA12878
fastqs:
- - /<fastqdata>/WGS_30X_R1.fastq.gz

- /<fastqdata>//WGS_30X_R2.fastq.gz
EOT

run janis prepare
janis prepare \

-o "$HOME/janis/WGSGermlineGATK-run/" \
--inputs inputs.yaml \
--source-hint hg38 \
WGSGermlineGATK

This will: - Write an inputs file to disk, - download all the hg38 reference files - transform any data types that might
need to be transformed, eg:

• gridss blacklist requires a bed, but the source hint gives a gzipped bed (ENCFF001TDO.bed.gz)

• snps_dbsnp wants a compressed and tabix indexed VCF, but the source hint gives a regular VCF.

• reference build the appropriate indexes for the hg38 assembly (as these aren’t downloaded by default)

• Perform some sanity checks on the data you’ve provided, eg:

– the contigs in the gridss_blacklist will be checked against those found in the assembly’s reference.

• Write a job file and run script into the output directory.

4.17. Janis Prepare 95

Janis

4.17.2 Downloading reference datasets

A source is declared on an input through the input documentation, there are two methods for doing this:

1. Single file - this file is always used regardless of the inputs

2. A dictionary of source hints. This might be useful for specifying a reference type, eg hg38 or hg19. However
this does involve the pipeline author finding public datasets for each hint.

Example:

import janis_core as j

myworkflow = j.WorkflowBuilder("wf")

Input that can be used for ALL workflows
myworkflow.input(

"inp",
File,
doc=j.InputDocumentation(

source="https://janis.readthedocs.io/en/latest/references/prepare.html"
)

)

Input that is only localised if the hint is specified
mworkflow.input(

"gridss_blacklist",
File,
doc=j.InputDocumentation(

source={
"hg19": "https://www.encodeproject.org/files/ENCFF001TDO/@@download/

→˓ENCFF001TDO.bed.gz",
"hg38": "https://www.encodeproject.org/files/ENCFF356LFX/@@download/

→˓ENCFF356LFX.bed.gz",
}

),
)

Secondary files and localising sources

By default, secondary files are downloaded with the primary file. The pipeline author can optionally request that
secondary files be not downloaded with skip_sourcing_secondary_files=True. In particular, this is im-
portant for the exemplar WGS pipelines, because the BWA indexes (".amb", ".ann", ".bwt", ".pac",
".sa") were generated with a different version of BWA.

Although the Janis Transformation step of the janis prepare will perform the re-index, this could take a few
hours. If you can speed up this step, please raise an issue <https://github.com/PMCC-BioinformaticsCore/janis-
bioinformatics/issues/new> or open a Pull Request!!

Types of reference paths

Janis can localise remote paths through its FileScheme mechanic. Currently, Janis supports the following fileschemes:

• Local (useful for keeping local references to a pipeline definition when sharing a pipeline internally)

• HTTP http:// OR http:// prefix (using a GET request)

• GCS gs:// prefix (public buckets only)

96 Chapter 4. Contents

Janis

Requires more work: - S3: Implementation required

Input Documentation Source

An InputDocumentation class can be used to document the different options about an input. See the
:class:janis.InputDocumentation initialiser below. You can supply it directly to the doc field of an input, but you
can also provide a dictionary which will get converted into an InputDocumentation, for example:

w = j.WorkflowBuilder("wf")

using the InputDocumentation class
w.input("inp1", str, doc=j.InputDocumentation(doc="This is inp1", quality=j.
→˓InputQualityType.user))

Use a dictionary
w.input("inp2", str, doc={"doc": "This is inp2", "quality": "user"})

class janis.InputDocumentation(doc: Optional[str], quality:
Union[janis_core.tool.documentation.InputQualityType,
str] = <InputQualityType.user: ’user’>, example:
Union[str, List[str], None] = None, source: Union[str,
List[str], Dict[str, Union[str, List[str]]], None] = None,
skip_sourcing_secondary_files=False)

__init__(doc: Optional[str], quality: Union[janis_core.tool.documentation.InputQualityType,
str] = <InputQualityType.user: ’user’>, example: Union[str, List[str], None] =
None, source: Union[str, List[str], Dict[str, Union[str, List[str]]], None] = None,
skip_sourcing_secondary_files=False)

Extended documentation for inputs

Parameters

• doc (str) – Documentation string

• quality (InputQualityType | "user" | "static" |
"configuration") – quality of input, whether the inputs are best classified by
user (data), static (references), configuration (like constants, but tweakable)

• example (str | List[str]) – An example of the filename, displayed in the gener-
ated example input.yaml

• source (str | List[str] | Dict[str, str | List[str]]) – A URI of
this input, that Janis could localise if it’s not provided. For example, you might want to
specify a gs://<path>

• skip_sourcing_secondary_files (bool) – Skip localising the secondary files
from the source. You might want to do this if the secondary files depend on the version of
the tool (eg: BWA)

4.17.3 Transformations

A strong benefit of the rich data types that Janis provides, means that we can do perform basic transformations to
prepare your data for the pipeline. Simply, we’ve taught Janis how to perform some basic transformations (using tools
in Janis!), and then Janis can determine how to convert your data, for example:

If you provide a VCF, and the pipeline requires a gzipped and tabix’d VCF, we construct a prepare stage that performs
this for you:

4.17. Janis Prepare 97

https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/fbcefc665a9a23073830acb8f87cc41ea58bcf8f/janis_assistant/management/filescheme.py#L483-L499
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Janis

VCF -> VcfGZ -> VcfGzTabix

More information

• The Conversion Problem (Janis guide)

• Bioinformatics transformations github:janis-bioinformatics/transformations/__init__.py

Note: These Janis transformations are performed AFTER the reference localisation, so janis can transform your
downloaded file to the correct format if possible.

4.17.4 Quality Checks

These are a number of fairly custom checks to catch some frequent errors that we’ve seen:

• Input checker: makes sure your inputs can be found (only works for local paths)

• Contig checker: If you define a single input of FASTA type and any number of inputs with BED type, Janis will
check that the contigs you declare in the BEDs are found in the .fasta.fai index. This check only returns
warnings, and will NOT stop you from running a workflow.

Janis performs some of these checks on every run, some are only performed on the janis prepare.

4.17.5 Developer notes

The Janis prepare steps are all implemented using PipelineModifiers:

• FileFinderLocatorModifier

• InputFileQualifierModifier

• InputTransformerModifier

• InputChecker

• ContigChecker

If entering through the prepare cli method, the run_prepare_processing flag is set which initialises a custom
set of pipeline modifiers to execute while preparing the job file.

Janis Transformations

Janis transformations are fairly simple, they’re defined in the relevant tool registry (eg: janis-bioinformatics), and
exposed through the janis.datatype_transformations entrypoint. These JanisTransformations are added
to a graph, and then we just perform a breadth first search on this graph looking for the shortest number of steps to
connect two data types. Transformations are directional, and no logic is performed to evaluate the weight or effort of
a step.

The Conversion Problem (Janis guide) describes JanisTransformations in a blog sort of style.

Job File

Although not strictly related to Janis Prepare, it was an important change that was made for janis-prepare to work
correctly. Functionally, a PreparedJob describes everything needed to run a workflow (except the workflow).

98 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/casestudy/conversionproblem.html?highlight=transformation
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/blob/master/janis_bioinformatics/transformations/__init__.py
https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/janis_assistant/modifiers/contigchecker.py
https://janis.readthedocs.io/en/latest/casestudy/conversionproblem.html?highlight=transformation

Janis

It’s an amalgamation of different sections of the janis configuration, adjusted inputs and runtime configurations. It’s
serializable, which means it can automatically be written to disk and parsed back in.

A run.sh script can be generated, which just calls the job file with the workflow reference, something like:

This script was automatically generated by Janis on 2021-01-13 11:14:40.121673.

janis run \
-j /Users/franklinmichael/janis/hello/20210113_111440/janis/job.yaml \
hello

4.18 Secondary / Accessory Files

In some domains (looking specifically at Bioinformatics here), a single file isn’t enough to contain all the information.
Janis borrows the concept of secondary files from the CWL specification, and in fact we use the same pattern for
grouping these files.

Often a secondary or accessory file is used to provide additional information, potentially a quick access index. These
files are attached to the original file by a specific file pattern. We’ll talk about that more soon.

For this reason, Janis allows data_types that inherit from a File to specify a secondary_file list of files to be
bundled with.

4.18.1 Secondary file pattern

As earlier mentioned, we follow the Common Workflow Language secondary file pattern:

1. If string begins with one or more caret ^ characters, for each caret, remove the last file extension from the path
(the last period . and all following characters). If there are no file extensions, the path is unchanged.

2. Append the remainder of the string to the end of the file path.

Examples

• IndexedBam

– Pattern: .bai

– Files:

* Base: myfile.bam

* myfile.bam.bai

• FastaWithIndexes:

– Pattern: .amb, .ann, .bwt, .pac, .sa, .fai, ^.dict

– Files:

* Base: reference.fasta

* reference.fasta.amb

* reference.fasta.ann

* reference.fasta.bwt

* reference.fasta.pac

4.18. Secondary / Accessory Files 99

https://github.com/common-workflow-language/common-workflow-language/blob/a062055fddcc7d7d9dbc53d28288e3ccb9a800d8/v1.0/Process.yml#L465-L473
https://janis.readthedocs.io/en/latest/datatypes/indexedbam.html
https://janis.readthedocs.io/en/latest/datatypes/fastawithindexes.html

Janis

* reference.fasta.sa,

* reference.fasta.fai

* reference.dict

Proposed

Implement optional secondary files as per CWL v1.1.

4.18.2 Implementation note

CWL

As we mimic the CWL secondary file pattern, we don’t need to do any extra work except by providing this pattern to
a:

• CommandInputParameter

• CommandOutputParameter

• InputParameter

• WorkflowOutputParameter

If you use the secondaries_present_as on a janis.ToolInput or janis.ToolOutput, a CWL ex-
pression is generated to rename the secondary file expression. More information can be found about this in common-
workflow-language/cwltool#1232.

Issues

CWLTool has an issue when attempting to scatter using multiple fields (using the dotproduct or
*_crossproduct methods), more information can be found on common-workflow-language/cwltool#1208.

WDL

The translation for WDL to implement secondary files was one of the most challenging aspects of the translation.
Notably, WDL has no concept of secondary files. There are a few things we had to consider:

• Every file needs to be individually localised.

• A data type with secondary files can be used in an array of inputs

• Secondary files may need to be globbed if used as an Output data type

• An array of files with secondaries can be scattered on (including scattered by multiple fields)

• Janis should fill the input job with these secondary files (with the correct extension)

Implementation

Let’s just break this down into different sections

100 Chapter 4. Contents

https://github.com/common-workflow-language/cwl-v1.1/blob/565eb43ac8836505c5fd57b0e8378f2988f61626/Process.yml#L525-L535
https://www.commonwl.org/v1.0/CommandLineTool.html#CommandInputParameter
https://www.commonwl.org/v1.0/CommandLineTool.html#CommandOutputParameter
https://www.commonwl.org/v1.0/Workflow.html#InputParameter
https://www.commonwl.org/v1.0/Workflow.html#WorkflowOutputParameter
https://github.com/common-workflow-language/cwltool/issues/1232
https://github.com/common-workflow-language/cwltool/issues/1232
https://github.com/common-workflow-language/cwltool/issues/1208

Janis

Case 1: Simple index

The following workflow.input("my_bam", BamBai), definition when connected to a tool might look like
the following

workflow WGSGermlineGATK {
input {
File my_bam
File my_bam_bai

}
call my_tool {
input:

bam=my_bam
bam_bai=my_bam_bai

}
output {
File out_bam = my_tool.out
File out_bam_bai = my_tool.out_bai

}
}

Note the extra annotations and mappings fot the bai type.

Case 2: Array of inputs with simple scatter

This is modification of the first example, nb: this isn’t full functional workflow code:

workflow.input("my_bams", Array(BamBai))

workflow.step(
"my_step",
MyTool(bam=workflow.my_bams),
scatter="bam"

)

Might result in the following workflow:

workflow WGSGermlineGATK {
input {
Array[File] my_bams
Array[File] my_bams_bai

}
scatter (Q in zip(my_bams, my_bams_bai)) {
call my_tool as my_step {

input:
bam=Q.left
bam_bai=Q.right

}
}

output {
Array[File] out_bams = my_tool_that_accepts_array.out
Array[File] out_bams_bai = my_tool_that_accepts_array.out_bai

(continues on next page)

4.18. Secondary / Accessory Files 101

Janis

(continued from previous page)

}
}

Case 3: Multiple array inputs, scattering by multiple fields

Consider the following workflow:

workflow.input("my_bams", Array(BamBai))
workflow.input("my_references", Array(FastaBwa))

workflow.step(
"my_step",
ToolTypeThatAcceptsMultipleBioinfTypes(

bam=workflow.my_bams, reference=workflow.my_references
),
scatter=["bam", "reference"],

)

workflow.output("out_bam", source=workflow.my_step.out_bam)
workflow.output("out_reference", source=workflow.my_step.out_reference)

This gets complicated quickly:

workflow scattered_bioinf_complex {
input {
Array[File] my_bams
Array[File] my_bams_bai
Array[File] my_references
Array[File] my_references_amb
Array[File] my_references_ann
Array[File] my_references_bwt
Array[File] my_references_pac
Array[File] my_references_sa

}
scatter (Q in zip(transpose([my_bams, my_bams_bai]), transpose([my_references, my_

→˓references_amb, my_references_ann, my_references_bwt, my_references_pac, my_
→˓references_sa]))) {

call MyTool as my_step {
input:

bam=Q.left[0],
bam_bai=Q.left[1],
reference=Q.right[0],
reference_amb=Q.right[1],
reference_ann=Q.right[2],
reference_bwt=Q.right[3],
reference_pac=Q.right[4],
reference_sa=Q.right[5]

}
}
output {
Array[File] out_bam = my_step.out_bam
Array[File] out_reference = my_step.out_reference

}
}

102 Chapter 4. Contents

Janis

Known limitations

• There is no namespace collision:

– Two files with similar prefixes but differences in punctuation will clash

– A second input that is suffixed with the secondary’s extension will clash: eg: mybam_bai will clash
with mybam with a secondary of .bai.

• Globbing a secondary file might not be possible when the original file extension is unknown. There are 2 considerations for this:

– Subclasses of File should caller super() with the expected extension

– Globbing based on a generated Filename (through InputSelector), will consider the extension property.

Relevant WDL issues:

• broadinstitute/cromwell#2269 (Secondary index files and directories in WDL)

• openwdl/wdl#289 (File Bundles and Secondary / Accessory Files)

• GATK Forums#9299 (Secondary index files and directories in WDL)

4.19 Unit Test Framework

Note: Available in v0.11.0 and later

4.19.1 Overview

You can write test cases for your tool by defining the tests() function in your Tool class. Test cases defined by this
function will be picked up by janisdk run-test command.

This unit test framework provides several predefined preprocessors to transform Janis execution output data in the
format that can be tested. For example, there is a preprocessor to read the md5 checksum of an output file. In addition
to the predefined preprocessors, the frameworks also allows users to define and pass their own preprocessors.

Define test cases

You can define multiple test cases per tool. For each test case, you can declare multiple expected outputs. Mostly, you
really only need to define more test cases if they require different input data.

The classes we use here janis_core.tool.test_classes.TTestCase, janis_core.
tool.test_classes.TTestExpectedOutput and janis_core.tool.test_classes.
TTestPreprocessor are declared at the bottom of this document.

class BwaAligner(BioinformaticsWorkflow):
def id(self):

return "BwaAligner"

...

def tests(self):
return [

(continues on next page)

4.19. Unit Test Framework 103

https://github.com/broadinstitute/cromwell/issues/2269
https://github.com/openwdl/wdl/issues/289
https://gatkforums.broadinstitute.org/wdl/discussion/9299/secondary-index-files-and-directories-in-wdl

Janis

(continued from previous page)

TTestCase(
name="basic",
input={

"bam": "https://some-public-container/directory/small.bam"
},
output=[

TTestExpectedOutput(
tag="out",
preprocessor=TTestPreprocessor.FileMd5,
operator=operator.eq,
expected_value="dc58fe92a9bb0c897c85804758dfadbf",

),
TTestExpectedOutput(

tag="out",
preprocessor=TTestPreprocessor.FileContent,
operator=operator.contains,
expected_value="19384 + 0 in total (QC-passed reads + QC-

→˓failed reads)",
),
TTestExpectedOutput(

tag="out",
preprocessor=TTestPreprocessor.LineCount,
operator=operator.eq,
expected_value=13,

),
],

)
]

Run the tests

Run a specific test case
janisdk run-test --test-case [TEST CASE NAME] [TOOL ID]

Run ALL test cases of one tool
janisdk run-test [TOOL ID]

To run the example test case shown above:

Run a specific test case
janisdk run-test --test-case=basic BwaAligner

Run all test cases
janisdk run-test BwaAligner

4.19.2 Test Files

There are two different ways to store your test files (input and expected output files):

Remote HTTP files:

you can use a publicly accessible http link https://some-public-container/directory/small.bam.

104 Chapter 4. Contents

Janis

• Input files will be downloaded to a cache folder in ~/.janis/remote_file_cache folder. This is the
same directory where files will be cached when you run janis run.

• Expected output files however will be cached in the test directory [WORKING DIRECTORY WHERE
janisdk run-test is run]/tests_output/cached_test_files/.

If the same url is found in the cache directory, we will not re-download the files unless the Last-Modified http
header has changed. If you want to force the files to be re-downloaded, you will need to remove the files from the
cache directories.

Local test files:

you can store your files in local directory named test_data. There are a few different examples of where you can
place this directory. Example from janis-bioinformatics project:

• A test_data folder that contain files to be shared by multiple tools can be located at
janis_bioinformatics/tools/test_data. To access files in this directory, you can call os.path.
join(BioinformaticsTool.test_data_path(), "small.bam").

• A test_data folder that contain files to be used by flagstat can be located at
janis_bioinformatics/tools/samtools/flagstat/test_data. To access files in this
directory from within the SamToolsFlagstatBase class, you can call os.path.join(self.
test_data_path(), "small.bam").

4.19.3 Preprocessors and Comparison Operators

TTestExpectedOutput.preprocessor is used to reformat the Tool output. TTestExpectedOutput.
operator is used to compare output value with the expected output.

Predefined Preprocessors

• Value: No preprocessing, value as output by Janis e.g. an integer, string, or a file path for a File type output.

• FileDiff: The differences between two files as output by difflib.unified_diff. This can only be applied
on File type output. If this preprocessor is used, TTestExpectedOutput.file_diff_source must be
provided. file_diff_source must contain the file path to compare the output file with.

• LinesDiff Number of different lines between two files as a tuple (additions, deletions), as
diff’d by the FileDiff preprocessor. If this preprocessor is used, TTestExpectedOutput.
file_diff_source must be provided. file_diff_source must contain the file path to compare the
output file with.

• FileContent: Extract the file content. This can only be applied to File type output.

• FileExists: Check if a file exists. It returns a True/False value. This can only be applied to File type output.

• FileSize: File size is bytes. This can only be applied on File type output.

• FileMd5: Md5 checksum of a file. This can only be applied to File type output.

• LineCount: Count the number of lines in a string or in a file.

• ListSize: Count the number of items in a list. This can only be applied to Array type output.

4.19. Unit Test Framework 105

Janis

Custom preprocessor example:

In this example below, we are testing a tool that has an output field named out. The output value of this field is a file
path that points to the location of a BAM file. We want to test the flagstat value of this BAM file. Here, we define
your custom preprocessor function that takes a file path as input and returns a string that contains the flagstat value of
a BAM file.

TTestExpectedOutput.expected_file simply points to a file that contains the expected output value.
You can also replace this with TTestExpectedOutput.expected_value="19384 + 0 in total
(QC-passed reads + QC-failed reads)\n ..."

TTestExpectedOutput(
tag="out",
preprocessor=Bam.flagstat,
operator=operator.eq,
expected_file="https://some-public-container/directory/flagstat.txt"

)

class Bam(File):
...

@classmethod
def flagstat(cls, file_path: str):

command = ["samtools", "flagstat", file_path]
result = subprocess.run(

command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
universal_newlines=True,

)

if result.stderr:
raise Exception(result.stderr)

return result.stdout

Custom operator example:

In this example, we also want to test the flagstat value of BAM file returned by the out output field.

Here, instead of writing a custom preprocessors, we write a custom operator that takes two file path and compare the
flagstat output of this two files.

TTestExpectedOutput(
tag="out",
preprocessor=TTestPreprocessor.Value,
operator=Bam.equal,
expected_value="https://some-public-container/directory/small.bam"

)

class Bam(File):
...

@classmethod
def equal(cls, file_path_1: str, file_path_2: str):

(continues on next page)

106 Chapter 4. Contents

Janis

(continued from previous page)

flagstat1 = cls.flagstat(file_path_1)
flagstat2 = cls.flagstat(file_path_2)

return flagstat1 == flagstat2

4.19.4 Declaration

class janis_core.tool.test_classes.TTestCase(name: str, input: Dict[str, Any], output:
List[janis_core.tool.test_classes.TTestExpectedOutput])

A test case requires a workflow or tool to be run once (per engine). But, we can have multiple output to apply
different test logic.

class janis_core.tool.test_classes.TTestExpectedOutput(tag: str, preprocessor:
Union[janis_core.tool.test_classes.TTestPreprocessor,
Callable[[Any], Any]], op-
erator: Callable[[Any, Any],
bool], expected_value:
Optional[Any] = None,
expected_file: Optional[str]
= None, file_diff_source:
Optional[str] = None, ar-
ray_index: Optional[int] =
None, suffix_secondary_file:
Optional[str] = None,
preprocessor_params: Op-
tional[Dict[KT, VT]] =
{})

Describe the logic on how to test the expected output of a test case. A test case can have multiple instances of
this class to test different output or different logic of the same output

class janis_core.tool.test_classes.TTestPreprocessor
An Enum class for a list of possible pre-processing we can do to output values

4.20 Configuring Janis Assistant

Warning: Configuring Janis had backwards incompatible changes in v0.12.0 with regards to specific keys.

When we talk about configuring Janis, we’re really talking about how to configure the Janis assistant and hence
Cromwell / CWLTool to interact with batch systems (eg: Slurm / PBS Torque) and container environments (Docker /
Singularity).

Janis has built in templates for the following compute environments:

• Local (Docker or Singularity)

– The only environment compatible with CWLTool.

• Slurm (Singularity only)

• PBS / Torque (Singularity only)

In an extension of Janis (janis-templates), we’ve produced a number of location specific templates, usually with sensi-
ble defaults.

4.20. Configuring Janis Assistant 107

https://github.com/PMCC-BioinformaticsCore/janis-assistant
https://github.com/PMCC-BioinformaticsCore/janis-templates

Janis

See this list for a full list of templates: https://janis.readthedocs.io/en/latest/templates/index.html.

4.20.1 Syntax

The config should be in YAML, and can contain nested dictionaries.

Note: In this guide we might use dots (.) to refer to a nested key. For example, notifications.email refers
to the following structure:

notifications:
email: <value>

4.20.2 Location of config

By default,

• Your configuration directory is placed at ~/.janis/.

• Your configuration path is a file called janis.conf in this directory, eg: ~/.janis/janis.conf

Both janis run / translate allow you to provide a location to a config using the -c / --config param-
eter.

In addition, you can also configure the following environment variables:

• JANIS_CONFIGPATH - simply the path to your config file

• JANIS_CONFIGDIR - The configuration path is determined by $JANIS_CONFIGDIR/janis.conf

4.20.3 Initialising a template

`bash janis init <template> [...options] `

By default this will place our config at ~/.janis/janis.conf. If there’s already a config there, it will NOT override it.

• -o / --output: output path to write to, default (~/.janis/janis.conf).

• -f / --force: Overwrite the config if one exists at the output path.

• --stdout: Write the output to stdout.

4.20.4 Environment variables

The following environment variables allow you to customise the behaviour of Janis, without writing a configuration
file. This is a convenient way to automatically configure Janis through an HPCs module system.

All the environment variables start with JANIS_, and is the value of enums declared below (and not the key name),
for example:

export JANIS_CROMWELLJAR='/path/to/cromwell.jar'

class janis_assistant.management.envvariables.EnvVariables
An enumeration.

108 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/templates/index.html

Janis

config_dir = 'JANIS_CONFIGDIR'
(Default: ~/.janis) Directory of default Janis settings

config_path = 'JANIS_CONFIGPATH'
(Default: $JANIS_CONFIGDIR/janis.conf) Default configuration file for Janis

cromwelljar = 'JANIS_CROMWELLJAR'
Override the Cromwell JAR that Janis uses

default_template = 'JANIS_DEFAULTTEMPLATE'
Default template to use, NB this template should have NO required arguments.

exec_dir = 'JANIS_EXCECUTIONDIR'
Use this directory for intermediate files

output_dir = 'JANIS_OUTPUTDIR'
Use this directory as a BASE to generate a new output directory for each Janis run

recipe_directory = 'JANIS_RECIPEDIRECTORY'
Directories for which each file (ending in .yaml | .yml) is a key of input values. See the RECIPES section
for more information.

recipe_paths = 'JANIS_RECIPEPATHS'
List of YAML recipe files (comma separated) for Janis to consume, See the RECIPES section for more
information.

search_path = 'JANIS_SEARCHPATH'
Additional search paths (comma separated) to lookup Janis workflows in

4.20.5 Configuration keys

We use a class definition to automatically document which keys you can provide to build a Janis configuration. These
keys exactly match the keys you should provide in your YAML dictionary. The type is either a Python literal, or a
dictionary.

For example, the class definition below corresponds to the following (partial) YAML configuration:

EXAMPLE CONFIGURATION ONLY
engine: cromwell
run_in_background: false
call_caching_enabled: true
cromwell:

jar: /Users/franklinmichael/broad/cromwell-53.1.jar
call_caching_method: fingerprint

class janis_assistant.management.configuration.JanisConfiguration(type)

__init__(output_dir: str = None, execution_dir: str = None,
call_caching_enabled: bool = True, engine: str = ’cromwell’, cromwell:
Union[janis_assistant.management.configuration.JanisConfigurationCromwell, dict] =
None, template: Union[janis_assistant.management.configuration.JanisConfigurationTemplate,
dict] = None, recipes: Union[janis_assistant.management.configuration.JanisConfigurationRecipes,
dict] = None, notifications: Union[janis_assistant.management.configuration.JanisConfigurationNotifications,
dict] = None, environment: Union[janis_assistant.management.configuration.JanisConfigurationEnvironment,
dict] = None, run_in_background: bool = None, digest_cache_location: str = None, con-
tainer: Union[str, janis_assistant.containers.base.Container] = None, search_paths:
List[str] = None)

Parameters

4.20. Configuring Janis Assistant 109

Janis

• engine ("cromwell" | "cwltool") – Default engine to use

• template (JanisConfigurationTemplate) – Specify options for a Janis tem-
plate for configuring an execution environment

• cromwell (JanisConfigurationCromwell) – A dictionary for how to configure
Cromwell for Janis

• recipes (JanisConfigurationRecipes) – Configure recipes in Janis

• notifications (JanisConfigurationNotifications) – Configure Janis
notifications

• environment (JanisConfigurationEnvironment) – Additional ways to con-
figure the execution environment for Janis

• output_dir – A directory that Janis will use to generate a new output directory for each
janis-run

• execution_dir – Move all execution to a static directory outside the regular output
directory.

• call_caching_enabled – (default: true) call-caching is enabled for subsequent runs,
on the SAME output directory

• run_in_background (bool) – By default, run workflows as a background process.
In a SLURM environment, this might submit Janis as a SLURM job.

• digest_cache_location (str) – A cache of docker tags to its digest that Janis uses
replaces your docker tag with it’s digest.

• container ("docker" | "singularity") – Container technology to use, impor-
tant for checking if container environment is available and running mysql instance.

• search_paths (List[str]) – A list of paths to check when looking for python files
and input files

Template

Janis templates are a convenient way to handle configuring Janis, Cromwell and CWLTool for special environments. A
number of templates are prebuilt into Janis, such as slurm_singularity, slurm_pbs, and number of additional
templates for specific HPCs (like Peter Mac, Spartan at UoM) are available, and documented in the:

• List of templates page.

You could use a template like the following:

rest of janis configuration
template:

id: slurm_singularity
arguments for template 'slurm_singularity', like 'container_dir'.
container_dir: /shared/path/to/containerdir/

class janis_assistant.management.configuration.JanisConfigurationTemplate(type)

__init__(id: str = None, **d)

Parameters id (The identifier of the template) –

110 Chapter 4. Contents

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.docker.com/engine/reference/commandline/pull/#pull-an-image-by-digest-immutable-identifier
https://docs.python.org/3/library/stdtypes.html#str
https://janis.readthedocs.io/en/latest/templates/index.html

Janis

Cromwell

Sometimes Cromwell can be hard to configure from a simple template, so we’ve exposed some extra common op-
tions. Feel free to [raise an issue](https://github.com/PMCC-BioinformaticsCore/janis-assistant/issues/new) if you
have questions or ideas.

class janis_assistant.management.configuration.JanisConfigurationCromwell(type)

__init__(jar: str = None, config_path: str = None, url: str = None, memory_mb:
int = None, call_caching_method: str = ’fingerprint’, timeout: int = 10,
polling_interval=None, db_type: janis_assistant.data.enums.dbtype.DatabaseTypeToUse
= <DatabaseTypeToUse.filebased: ’filebased’>, mysql_credentials: Union[dict,
janis_assistant.management.configuration.MySqlInstanceConfig] = None, addi-
tional_config_lines: str = None)

Parameters

• url (str) – Use an existing Cromwell instance with this URL (with port). Use the BASE
url, do NOT include http.

• jar – Specific Cromwell JAR to use (prioritised over $JANIS_CROMWELLJAR)

• config_path – Use a supplied Config path when running a Cromwell instance. Also
see additional_config_lines for including specific cromwell options.

• memory_mb – Amount of memory to give Cromwell instance through java -xmx
<max-memory>M -jar <jar>

• call_caching_method – (Default: “fingerprint”) Cromwell caching strategy to use,
see Call cache strategy options for local filesystem for more information.

• timeout – Suspend a Janis workflow if unable to contact cromwell for <timeout>
MINTUES.

• polling_interval – How often to poll Cromwell, by default this starts at 5 sec-
onds, and gradually falls to 60 seconds over 30 minutes. For more information, see the
janis_assistant.Cromwell.get_poll_interval method

• db_type ("none" | "existing" | "managed" | "filebased" |
"from_script") – (Default: filebased) DB type to use for Janis. “none”
-> no database; “existing” -> use mysql credentials from cromwell.
mysql_credentials; “managed” -> Janis will start and manage a containerised
MySQL instance; “filebased”: Use the HSQLDB filebased db through Cromwell for
SMALL workflows only (NB: this can produce large files, and timeout for large work-
flows); “from_script”: Call the script $JANIS_DBCREDENTIALSGENERATOR for
credentials. See get_config_from_script for more information.

• mysql_credentials (MySqlInstanceConfig) – A dictionary of MySQL cre-
dentials

• additional_config_lines (str) – A string to add to the bottom of a generated
Cromwell configuration. This is NOT used for an existing cromwell instance, or a config
is supplied.

class janis_assistant.management.configuration.MySqlInstanceConfig(type)

__init__(url, username, password, dbname=’cromwell’)
Configuration options for a MySQL instance

Parameters

4.20. Configuring Janis Assistant 111

https://github.com/PMCC-BioinformaticsCore/janis-assistant/issues/new
https://docs.python.org/3/library/stdtypes.html#str
https://cromwell.readthedocs.io/en/stable/Configuring/#call-cache-strategy-options-for-local-filesystem
https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/janis_assistant/engines/cromwell/main.py#L179
https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/janis_assistant/management/configuration.py#L621
https://docs.python.org/3/library/stdtypes.html#str

Janis

• url – URL of the mysql instance (including port if not 3036)

• username – Username

• password – Password, not this is embedded into the Cromwell configuration (<output-
dir>/janis/configuration/cromwell.conf)

• dbname – Database name to use, default ‘cromwell’

Existing Cromwell instance

In addition to the previous cromwell.url method, you can also manage this through the command line. To config-
ure Janis to submit to an existing Cromwell instance (eg: one already set up for the cloud), the CLI has a mechanism
for setting the cromwell_url:

urlwithport="127.0.0.1:8000"
janis run --engine cromwell --cromwell-url $urlwithport hello

OR

‘~/janis.conf‘

engine: cromwell
cromwell:

url: 127.0.0.1:8000

Overriding Cromwell JAR

In additional to the previous cromwell.jar, you can set the location of the Cromwell JAR through the environment
variable JANIS_CROMWELLJAR:

export JANIS_CROMWELLJAR=/path/to/cromwell.jar

Recipes

Often between a number of different workflows, you have a set of inputs that you want to apply multiple times. For
that, we have recipes.

Note: Recipes only match on the input name. Your input names _MUST_ be consistent through your pipelines for
this concept to be useful.

class janis_assistant.management.configuration.JanisConfigurationRecipes(type)

__init__(recipes: dict = None, paths: Union[str, List[str]] = None, directories: Union[str, List[str]]
= None)

Parameters

• recipes (dict) – A dictionary of input values, keyed by the recipe name.

• paths (List[str]) – a list of *.yaml files, where each path contains a dictionary of
input values, keyed by the recipe name, similar to the previous recipes name.

112 Chapter 4. Contents

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Janis

• directories (List[str]) – a directory of *.yaml files, where the * is the recipe
name.

For example, everytime I run the WGSGermlineGATK pipeline with hg38, I know I want to provide the same refer-
ence files. There are a few ways to configure this:

• Recipes: A dictionary of input values, keyed by the recipe name.

• Paths: a list of *.yaml files, where each path contains a dictionary of input values, keyed by the recipe name,
similar to the previous recipes name.

• Directories: a directory of *.yaml files, where the * is the recipe name.

The examples below, encode the following information. When we use the hg38 recipe, we want to provide an input
value for reference as /path/to/hg38/reference.fasta, and input value for type as hg38. Similar for a
second recipe for hg19.

Recipes dictionary

You can specify this recipe directly in your janis.conf:

recipes:
recipes:
hg38:

reference: /path/to/hg38/reference.fasta
type: hg38

hg19:
reference: /path/to/hg19/reference.fasta
type: hg19

Recipes Paths

Or you could create a myrecipes.yaml with the contents:

hg38:
reference: /path/to/hg38/reference.fasta
type: hg38

hg19:
reference: /path/to/hg19/reference.fasta
type: hg19

And then instruct Janis to use this file in two ways:

1. In your janis.conf with:

recipes:
paths:
- /path/to/myrecipes.yaml

2. OR, you can export the comma-separated environment variable:

export JANIS_RECIPEPATHS="/path/to/myrecipes.yaml,/path/to/myrecipes2.yaml"

Recipe Directories

Create two files in a directory”

4.20. Configuring Janis Assistant 113

https://docs.python.org/3/library/stdtypes.html#str
https://janis.readthedocs.io/en/latest/pipelines/wgsgermlinegatk.html

Janis

1. hg38.yaml:

reference: /path/to/hg38/reference.fasta
type: hg38

2. hg19.yaml:

reference: /path/to/hg19/reference.fasta
type: hg19

And similar to the paths, you can specify this directory in two ways:

1. In your janis.conf with:

recipes:
directories:
/path/to/recipes has two files, hg38.yaml | hg19.yaml
- /path/to/recipes/

2. OR, you can export the comma-separated environment variable:

export JANIS_RECIPEPATHS="/path/to/recipes/,/path/to/recipes2/"

Notifications

class janis_assistant.management.configuration.JanisConfigurationNotifications(type)

__init__(email: str = None, from_email: str = ’janis-noreply@petermac.org’, mail_program: str =
None)

Parameters

• email – Email address to send status updates to

• from_email – (Default: janis-noreply@petermac.org)

• mail_program – Which mail program to use to send emails. A fully formatted email
will be directed as stdin (eg: sendmail -t)

Environment

class janis_assistant.management.configuration.JanisConfigurationEnvironment(type)

__init__(max_cores: int = None, max_memory: int = None, max_duration: int = None)
Additional settings to configure a Janis environment. Currently, it mostly involves restricing resources
(like cores, memory, duration) to fit within specific compute requirements. Notable, these values limit the
requested values if they’re a number. It doesn’t currently limit this value if it’s determined via an operator.

Parameters

• max_cores (int) – Limit the number of CPUs a job can request

• max_memory (int) – Limit the amount of memory (in GB) a job can request

• max_duration (int) – (Default: 86400) Limit the amount of time (in seconds) a job
can request.

114 Chapter 4. Contents

mailto:janis-noreply@petermac.org
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

Janis

4.21 Configuring resources (CPU / Memory)

Sometimes you’ll want to override the amount of resources a tool will get.

4.21.1 Hints

There are changes to the tool docs coming to encapsulate this information.

Some tools are aware of hints, and can change their resources based on the hints you provide. For example, BWA
MEM responds to the captureType hint (targeted, exome, chromosome, 30x, 90x).

4.21.2 Generating resources template

Sometimes you want complete custom control over which resources each of your tool, you can generate an inputs
template for resources with the following:

$ janis inputs --resources BWAAligner

bwamem_runtime_cpu: 16
bwamem_runtime_disks: local-disk 60 SSD
bwamem_runtime_memory: 16
cutadapt_runtime_cpu: 5
cutadapt_runtime_disks: local-disk 60 SSD
cutadapt_runtime_memory: 4
fastq: null
reference: null
sample_name: null
sortsam_runtime_cpu: 1
sortsam_runtime_disks: local-disk 60 SSD
sortsam_runtime_memory: 8

4.21.3 Limitations

• You are unable to size a specific shard within a scatter. (See Expressions in runtime attributes)

• The only way to set the disk size for a tool is to generate the inputs template, and set a value.

• Currently (2020-03-20) you are unable to change the time limit of tasks

4.21.4 Upcoming work

Leave an issue on GitHub (or comment on the linked issue) if you have comments.

Proposed: PMCC-BioinformaticsCore/janis-assistant#9

• Providing hints to get appropriately sized resources

janis inputs [PROPOSED: --hint-captureType 30x] --resource WGSGermlineGATK

Proposed:

• Expressions in runtime attributes.

4.21. Configuring resources (CPU / Memory) 115

https://github.com/PMCC-BioinformaticsCore/janis-assistant/issues/new
https://github.com/PMCC-BioinformaticsCore/janis-assistant/issues/9

Janis

4.22 Call Caching

Call caching, or the ability for pipelines to use previous computed results. Each engine implements this separately, so
this guide will assist you in setting up Janis, and how to configure the engines caching rules.

This feature can also be viewed as “resuming a workflow where you left off”.

You may need to provide additional parameters when you run your workflow to ensure call-caching works. Please
read this guide carefully.

4.22.1 Configuring Janis

You need to include the following line in your Janis Configuration:

...other options
call_caching_enabled: true

Strongly recommended:

• Use the --development run option as it ensures Cromwell will use the required database, and additionally
sets the --keep-intermediate-files flag:

– Remember, Janis will remove your execution directory (default: <outputdir>/janis/execution).
And call caching only works if your intermediate files are immediately available.

CWLTool

No extra configuration should be required.

Cromwell

More information about how Cromwell call-caching works below

You’re running on a local or shared filesystem (including HPCs), we strongly recommend running Cromwell version
50 or higher, and to [use the fingerprint hashing strategy (Docs | PR):

cromwell:
call_caching_method: fingerprint

You MUST additionally run Janis with the --mysql (recommended: --development) flag, Cromwell relies on a
database for call-caching to work (unless you’re running your own Cromwell server).

4.22.2 How does call-caching work

CWlTool

Needs further clarification.

116 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/configuration.html#other-janis-options
https://cromwell.readthedocs.io/en/stable/Configuring/#local-filesystem-options
https://github.com/broadinstitute/cromwell/pull/5450
https://cromwell.readthedocs.io/en/stable/tutorials/PersistentServer/
https://cromwell.readthedocs.io/en/stable/tutorials/PersistentServer/

Janis

Cromwell

More information: Cromwell: Call Caching

More docs are in progress (here is our investigation), but specifically, Cromwell hashes all the components of your
task:

• output count

• runtime attributes

• output expression

• input count

• backend name

• command template

• input - hash of the file, dependent on the filesystem (local, GCS, S3) - see more below.

and determines a total hash for the call you are going to make. Cromwell will then check in its database to see if it’s
made a call that exactly matches this hash, and if so uses the stored result.

If this call has NOT been cached, it will compute the result and then store it against the original hash for future use.

Input hash by filesystem

If you use a blob storage, like:

• Google Cloud Storage (GCS: gs://)

• Amazon Simple Storage Service (S3: s3://)

Cromwell can use the object id (the etag), as any modification to these files changes the object identifier.

The HTTP

Local filesystem

In a local filesystem, you don’t have this object ID luxury, so there are a number of hashing strategies:

• file: md5 hash of the file content (bad for large files),

• path: computes an md5 hash of the file path (doesn’t work for containers),

• path+modtime: computes md5 hash of file path + modtime (doesn’t work for containers),

• xxhash (PROPOSED, > 50): Quicker hashing strategy for entire file.

• fingerprint (PROPOSED, > 50): Uses the xxhash strategy on (the first 10MB of file + mod time).

4.23 Common Workflow Language

Description about the CWL project, how some of the concepts map and limitations in the implementation.

4.23. Common Workflow Language 117

https://cromwell.readthedocs.io/en/stable/cromwell_features/CallCaching/
https://github.com/broadinstitute/cromwell/issues/5346
https://github.com/broadinstitute/cromwell/pull/5450
https://github.com/broadinstitute/cromwell/pull/5450

Janis

4.23.1 Equivalents

• How do I specify an Array from types?

By wrapping the data_type by an Array, for example: String -> Array(String). Nb: the Array type must be
imported from janis_core.

• What’s the equivalent for ‘‘InitialWorkDirRequirement‘‘?

You can add localise_file=True to your ToolInput. This is well defined for individual files in CWL and
WDL. There is no equivalent for writable, though suggestions are welcome. Although the localise_file
attribute is allowed for Array data types, the WDL translation will become disabled as this behaviour is not well
defined.

From v1.1/CommandLineTool:

If the same File or Directory appears more than once in the InitialWorkDirRequirement listing, the im-
plementation must choose exactly one value for path; how this value is chosen is undefined.

• What’s the equivalent for ‘‘EnvVarRequirement‘‘ / how do I ensure environment variables are set in my
execution environment?

You can include the following code block within your CommandTool:

Within CommandTool

def env_vars(self):
return {

"myvar1": InputSelector("myInput"),
"myvar2": "constantvalue"

}

4.24 Workflow Description Language

Description about the WDL project, how some of the concepts map and limitations in the implementation.

4.25 Collecting tool outputs

This guide will roughly walk you through the different ways of collecting outputs from a CommandTool. The bread
and butter of this tutorial is the ToolOutput, and how you use various Selectors / Operators.

Examples:

• Stderr / Stdout

• Wildcard / glob outputs

• Named outputs

class janis.ToolOutput(tag: str, output_type: Union[Type[Union[str, float,
int, bool]], janis_core.types.data_types.DataType,
Type[janis_core.types.data_types.DataType]], selector:
Union[janis_core.operators.selectors.Selector, str, None] = None,
presents_as: str = None, secondaries_present_as: Dict[str, str] = None, doc:
Union[str, janis_core.tool.documentation.OutputDocumentation, None] =
None, glob: Union[janis_core.operators.selectors.Selector, str, None] =
None, _skip_output_quality_check=False)

118 Chapter 4. Contents

https://www.commonwl.org/v1.1/CommandLineTool.html#InitialWorkDirRequirement
https://janis.readthedocs.io/en/latest/references/listoperators.html

Janis

__init__(tag: str, output_type: Union[Type[Union[str, float, int, bool]], ja-
nis_core.types.data_types.DataType, Type[janis_core.types.data_types.DataType]],
selector: Union[janis_core.operators.selectors.Selector, str, None] = None,
presents_as: str = None, secondaries_present_as: Dict[str, str] = None,
doc: Union[str, janis_core.tool.documentation.OutputDocumentation, None] =
None, glob: Union[janis_core.operators.selectors.Selector, str, None] = None,
_skip_output_quality_check=False)

A ToolOutput instructs the the engine how to collect an output and how it may be referenced in a workflow.

Parameters

• tag – The identifier of a output, must be unique in the inputs and outputs.

• output_type – The type of output that is being collected.

• selector – How to collect this output, can accept any janis.Selector.

• glob – (DEPRECATED) An alias for selector

• doc – Documentation on what the output is, used to generate docs.

• _skip_output_quality_check – DO NOT USE THIS PARAMETER, it’s a scape-
goat for parsing CWL ExpressionTools when an cwl.output.json is generated

You should note that there are key differences between how strings are coerced into Files / Directories in CWL and
WDL.

• In WDL, a string is automatically coercible to a file, where the path is relative to the execution directory

• In CWL, a path is NOT automatically coercible, and instead a FILE object ({path: "<path>", class:
"File / Directory"}) must be created. Janis shortcuts this instead, by inserting your strings as a globs,
and letting CWL do this. There may be unintended side effects of this process.

4.25.1 Convention

We’ll presume in this workflow that you’ve imported Janis like the following:

import janis_core as j

4.25.2 Examples

Stderr / Stdout

Collecting stdout and stderr can be done by simply annotating the types. This is functionally equivalent to type File,
and using Stderr / Stdout as a selector:

outputs=[
stdout
j.ToolOutput("out_stdout_1", j.Stdout()),
j.ToolOutput("out_stdout_2", j.File(), selector=j.Stdout()),
stderr
j.ToolOutput("out_stderr_1", j.Stderr()),
j.ToolOutput("out_stderr_2", j.File(), selector=j.Stderr()),

]

4.25. Collecting tool outputs 119

Janis

Wildcard / glob outputs

If it’s not practical or impossible to determine the names of the outputs, you can use a janis.WildcardSelector
to find all the files that match a particular pattern. This glob pattern is not transformed, and differences may occur
between CWL / WDL depending on what glob syntax they use - please refer to their individual documentation for
more information

• CWL: Globs

• WDL: Globs

You can use a glob in Janis with:

outputs=[
j.ToolOutput("out_text_files", j.Array(j.File), selector=j.WildcardSelector("*.txt

→˓")),
the next two are functionally equivalent
j.ToolOutput("out_single_text_file_1", j.Array(j.File), selector=j.

→˓WildcardSelector("*.txt", select_first=True)),
j.ToolOutput("out_single_text_file_2", j.Array(j.File), selector=j.

→˓WildcardSelector("*.txt")[0])
]

Roughly, this is translated to the following:

WDL:

Array[File] out_txt_files = glob("*.txt")
Array[File] out_single_txt_file_1 = glob("*.txt")[0]
Array[File] out_single_txt_file_2 = glob("*.txt")[0]

CWL:

Named outputs

Often we’ll use a string or a Filename generator to name an output of a tool. For example, samtools sort accepts
an argument -o which is an output filename, on top of the regular "bam" input. We want our output to be of type
Bam, so we’ll use a janis.Filename class, this accepts a few arguments: prefix, suffix‘ and extension, and
will generate a filename based on these attributes.

We want our filename to be based on the input bam to keep consistency in our naming, so let’s choose the following
attributes:

• prefix - will be the Bam, but want the file extension removed (this will automatically take the basename)

• suffix - “.sorted”‘

• extension - .bam

We can create the following ToolInput value to match this (we use a ToolInput as it means we could override it later):

ToolInput(
"outputFilename",
Filename(

prefix=InputSelector("bam", remove_file_extension=True),
suffix=".sorted",
extension=".bam",

),
position=1, # Ensure it appears before the "bam" input

(continues on next page)

120 Chapter 4. Contents

Janis

(continued from previous page)

prefix="-o", # Prefix, eg: '-o <output-filename>'
)

Then, on the ToolOutput, we can use the selector selector=InputSelector("outputFilename") to get
this value. This results in the final tool:

SamtoolsSort_1_9_0 = CommandToolBuilder(
tool="SamToolsSort",
base_command=["samtools", "sort"],
inputs=[

ToolInput("bam", input_type=Bam(), position=2),
ToolInput(

"outputFilename",
Filename(

prefix=InputSelector("bam", remove_file_extension=True),
suffix=".sorted",
extension=".bam",

),
position=1,
prefix="-o",

),
],
outputs=[ToolOutput("out", Bam(), selector=InputSelector("outputFilename"))],
container="quay.io/biocontainers/samtools:1.9--h8571acd_11",
version="1.9.0",

)

Looking at the relevant WDL:

task SamToolsSort {
input {
File bam
String? outputFilename

}
command <<<
set -e
samtools sort \

-o '~{select_first([outputFilename, "~{basename(bam, ".bam")}.sorted.bam"])}' \
'~{bam}'

>>>
output {
File out = select_first([outputFilename, "~{basename(bam, ".bam")}.sorted.bam"])

}
}

And CWL:

class: CommandLineTool
id: SamToolsSort
baseCommand:
- samtools
- sort

inputs:
- id: bam
type: File

(continues on next page)

4.25. Collecting tool outputs 121

Janis

(continued from previous page)

inputBinding:
position: 2
- id: outputFilename
type:
- string
- 'null'
default: generated.sorted.bam
inputBinding:
prefix: -o
position: 1
valueFrom: $(inputs.bam.basename.replace(/.bam$/, "")).sorted.bam

outputs:
- id: out
type: File
outputBinding:
glob: $(inputs.bam.basename.replace(/.bam$/, "")).sorted.bam

4.26 Configuring Janis for HPCs

The Janis assistant currently implements Cromwell as an execution engine which supports HPCs.

The best way to use Janis and your HPC is to use one of the provided configurations. Currently, all of these configs
use singularity to manage docker containers.

See a list of templates here.

4.26.1 Example: Slurm

• Template ID: slurm_singularity

• Documentation: https://janis.readthedocs.io/en/latest/templates/
slurm_singularity.html

• CLI help: janis init slurm_singularity --help.

Example to configure this:

This will write a janis.conf to your $HOME/.janis/janis.conf
$ janis init slurm_singularity

$ cat ~/.janis/janis.conf
engine: cromwell
notifications:
email: null
template:
catch_slurm_errors: true
id: slurm_singularity
max_workflow_time: 20100
sbatch: sbatch
send_job_emails: false

122 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/templates/index.html

Janis

Background mode

The slurm_singularity template constructs

4.27 Engine support

Janis currently support 2 engines:

• CWLTool

• Cromwell

Both of these engines have their limitations, and there will instructions in this document about those limitations and
how they can be installed / configured.

4.27.1 CWLTool

CWLTool is the reference implementation for the Common Workflow Language (CWL). It’s command line driven and
can use Docker / Singularity for container driven processes. Unsurprisingly Janis transpiles your workflow to CWL to
run with CWLTool.

Limitations

CWLTool only runs one tool at a time in serial. Even though there is a parallel mode, this isn’t production stable, and
Janis can’t provide accurate metadata and progress tracking with this mode. CWLTool by itself also doesn’t have the
ability to submit to batch systems. With some configuration, the manager of Janis (that spins up CWLTool) can be
submitted to a Batch System.

Janis determines the progress of your workflow by processing the stdout and converting it into the internal Workflow
metadata models.

Known issues:

• Scattering on multiple fields with secondary files

Installation notes

The base CWLTool can be installed through Pip, see other installation methods here: GitHub: common-workflow-
language.cwltool.

In addition Node should be installed, otherwise CWLTool is going to try and call out to Docker to run a node server.
This doesn’t always work in shared environments.

4.27.2 Cromwell

Cromwell is a workflow engine produced by the Broad Institute. It is very customisable for shared file systems (HPCs)
and supports cloud computation through GCP (and supposed AWS).

Limitations:

CWL provides no pub-sub method for workflow notifications. Progress tracking is provided through requesting the
metadata from the REST endpoint, and transforming this metadata into a recognised format for Janis. This metadata
becomes quite large as the workflow grows, so is polled every 5-6 seconds.

4.27. Engine support 123

https://github.com/common-workflow-language/cwltool
https://github.com/common-workflow-language/cwltool/issues/1208
https://github.com/common-workflow-language/cwltool#install
https://github.com/common-workflow-language/cwltool#install

Janis

• CWL: InitialWorkDirRequirement not returning new localized path when constructing command

• CWL output doesn’t multiple workflow outputs that reference the same output of a tool

Installation notes:

Cromwell requires a Java 8 runtime environment, this must be loaded at submit for Janis to start Cromwell. Janis looks
in the following places for a Cromwell jar:

• Environment (path): JANIS_CROMWELLJAR

• Configuration (path) : cromwell.jarpath

• ConfigDir (globbed): Searches inside the configDir for the pattern: "cromwell-*.jar" (default ~/.
janis/).

If no version of cromwell is found, then the latest version is downloaded from GitHub and placed in the config dir.

MySQL

Additionally, Janis (expected >= v0.8.0) will attempt to start a MySQL container for persistence, stability and even-
tually call caching of Cromwell. This is facilitated using Docker or Singularity. By default this is Docker, and can
currently only be configured using an environment template.

The data files for MySQL are stored within your task execution directory, as a workflow gets larger these database
files might grow in size. MySQL can be disabled using the --no-mysql flag on the CLI for run.

4.27.3 Unsupported engines

Here are a couple of other engines that we tried, but either haven’t got them working yet or they don’t quite fit our
purposes.

Toil

Toil is primarily Python API driven workflow, it supports CWL through a bridge that uses CWLTool to parse and run
the jobs. Although it is a good candidate for Janis, it’s difficult to determine the progress of a workflow through the
internal job store. It might be possible to generate the workflow in a particular way and rewrite the CWLToil bridge
and parse the –stats output, but it was infeasible for this project.

• How to figure out progress using –stats

• toil-cwl-runner isn’t assigning defaults for subworkflow.

MiniWDL

MiniWDL is an alternative engine for WDL support. miniWDL runs the exemplar WGS pipelines as expected on
targeted panels, but no investigation has been completed how to obtain progress information or whether it can be
configured to work with batch systems, the cloud or with singularity.

124 Chapter 4. Contents

https://github.com/broadinstitute/cromwell/issues/4775
https://broadworkbench.atlassian.net/browse/BA-5790
https://github.com/DataBiosphere/toil/issues/2580
https://github.com/DataBiosphere/toil/issues/2727

Janis

4.28 Updating Janis

Janis may seem like (an organised) chaos of individual Python packages, but they’re individual to ensure proper
separation of concerns, and allows us to provide bug fixes to each section separately.

The primary Janis module janis-pipelines (RELEASES page) contains a list of all the packages and their
versions. But sometimes we make quick bug fixes to individual projects, without doing a big release of the whole
project.

We recommend sticking to these major releases, you can update Janis to the latest major release with:

pip3 install --no-cache --upgrade janis-pipelines

4.28.1 Power users

Okay, so you’re a power user and like to live on the edge. You need to decide now whether you like to live close to the
cliff, or on the bleeding edge:

• Close-ish: Installing specific modules from Pip

• Bleeding edge: Installing individual projects from GitHub.

Installing from Pip

Janis projects follow a predictable naming structure:

With one except, janis-assistant is called janis-pipelines.runner for legacy reasons.

janis-pipelines.<projectname>

You could for example update janis-core with:

pip3 install --no-cache --upgrade janis-pipelines.core

Bleeding edge: From GitHub

You should be warned that builds from GitHub are not always stable, and sometimes projects get released
together as they contain inter-dependencies. We’d also recommend that you install from GitHub with the
--no-dependencies flag.

Due diligence over, you can install from GitHub with the following line (replacing the GitHub link with the GitHub
repo you’re trying to install).

pip3 install --no-cache --upgrade --no-dependencies git+https://github.com/PMCC-
→˓BioinformaticsCore/janis-<project>.git

4.29 Frequently asked questions

This document contains some common FAQ that may not have a place outside this documentation.

4.28. Updating Janis 125

https://github.com/PMCC-BioinformaticsCore/janis/releases

Janis

4.29.1 Janis Registry

• Exception: Couldn’t find tool: ‘MyTool’

To ensure your tool is correctly found by the registry (JanisShed), you must ensure that:

• The tool implements all abstract methods (can be initialised)

• Available within two levels of the janis-pipelines.tool extension root. This means that it needs to be within one
additional import from the base __init__.

For example:

.
|-- __init__.py # imports my_directory
|-- my_directory/
| |-- __init__.py # imports tool from mytool.py
| |-- mytool.py

If you’re still having trouble, use janis spider --trace mytool to give you an indication of why your tool
might be missing.

4.29.2 Command tools and the command line

• Why is my input not being bound onto the command line?

You need to provide a position or prefix to a :class:janis.ToolInput to be bound on the command
line.

• How do I prefix each individual element in an array for my command line?

Set prefix_applies_to_all_elements=True on the :class:janis.ToolInput.

• How do I make sure my file is in the execution directory? / How do I localise my file?

Set localise_file=True on the :class:janis.ToolInput. Although the localise_file attribute
is allowed for Array data types, the WDL translation will become disabled as this behaviour is not well defined.

• How do I include environment variables within my execution environment?

These are only available from within a CommandTool, and available by overriding the env_vars(self)
method to return a dictionary of string to Union[str, Selector] key-value pairs.

• Can a janis.ToolInput be marked as streamable?

Currently there’s no support to mark ToolInput’s as streamable. Although the CWL specification.
does support marking inputs as streamable, WDL does not and, there is no engine support.

• How can I manipulate an input value?

Janis only provides a limited way of manipulating input values, internally using a StringFormatter.

Eg:

– Initialisation

* StringFormatter("Hello, {name}", name=InputSelector("username"))

– Concatenation

* "Hello, " + InputSelector("username")

* InputSelector("greeting") + StringFormatter(", {name}",
name=InputSelector("username"))

126 Chapter 4. Contents

https://www.commonwl.org/v1.2/CommandLineTool.html#CommandInputParameter
https://github.com/broadinstitute/cromwell/issues/3454#issuecomment-455367417
https://janis.readthedocs.io/en/latest/references/selectors.html#stringformatting

Janis

• How do I specify an input multiple times on the command line?

– Create a ToolInput for the input you want to create.

* Omit any binding options, ie NO position and NO prefix.

– Create a ToolArgument with the value ‘InputSelector(”nameofyourinput”) and the binding options:

For example:

class MyTool(CommandTool):
def inputs(self):

return [ToolInput("myInput", String)]

def arguments(selfs):
return [

ToolArgument(InputSelector("myInput"), position=1),
ToolArgument("transformed-" + InputSelector("myInput"), position=2,

→˓prefix="--name")
]

• How do I ensure environment variables are set within my execution environment?

You can include the following block within your CommandTool:

Within CommandTool

def env_vars(self):
return {

"myvar1": InputSelector("myInput"),
"myvar2": "constantvalue"

}

• How do I make my generated filenames unique for a scatter or from different runs betweens tools?

Long story short, you can’t.

But there are a fun few reasons why that’s currently the case:

– The filenames are generated at transpile time for a tool wrapper. This means that tasks that use this tool
will get the same filename, including if your workflow scatters over this task.

– WDL doesn’t really have a mechanism for achieving dynamic or generated components like this, and CWL
was flaky at best.

– Call caching in Cromwell relies on the command line being constructed, so the generated filenames cur-
rently break this, and a purely randomly generated filename would breat this further.

– We have cascaded filename components on the roadmap, so your filename can be built from a collection
of inputs (sort of possible anyway).

4.29.3 Running workflows

• How do I detect a workflow’s status from the command line?

You can request metadata for a workflow You can use the following bash command to detect the status.

janis metadata <dir / wid> |grep status|tr -s ' '|cut -d ' ' -f 2

4.29. Frequently asked questions 127

Janis

Note that if Janis is killed suddenly, it might not have enough time to mark the workflow as failed or terminated.
It’s worth checking the last_updated_time, if a workflow hasn’t been updated in a couple of hours, it’s likely
Janis has been killed.

The metadata will have the following keys:

– https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/janis_assistant/data/enums/workflowmetadatakeys.py

And the workflow status can have the following states:

– https://github.com/PMCC-BioinformaticsCore/janis-assistant/blob/master/janis_assistant/data/enums/taskstatus.py

• How can I override a specific tools’ resources, like memory / ram, CPUs, or runtime (coming soon)?

Long story short, lookup the override key with:

janis inputs --resources <workflow>

It looks like yourworkflow_embeddedtool_runtime_memory: 8. More information: Configuring
resources (CPU / Memory).

4.29.4 Containers

• How do I override the container being used?

You can override the container being used by specifying a container-override, there are two ways to do
this:

– CLI with the syntax: janis [translate|run] --container-override
'MyTool=myorganisation/mytool:0.10.0' mytool

– API: include container override dictionary: mytool.translate("wdl",
container_override={"mytool": "myorganisation/mytool:0.10.0"}), the
dictionary has structure: {toolId: container}. The toolId can be an asterisk * to override all
tools’ containers.

4.30 Common errors

From time to time you’ll come across error messages in Janis, and hopefully they give you a good indication of what’s
happened, but here we’ll address some.

If you’ve got a strange error message and don’t know what’s happening, post a message on Gitter or raise an issue on
GitHub!

4.30.1 Command line positions

Command line positioning can be a little confusing. When running or translating you should follow this format:

janis run [run-arguments] yourworkflow.py [workflow-inputs]

Where

• run-arguments are options like --inputs, --recipe, --hint, --engine, --stay-connected,
etc.

• workflow-inputs are additional inputs you

Errors:

128 Chapter 4. Contents

https://janis.readthedocs.io/en/latest/references/resources.html
https://janis.readthedocs.io/en/latest/references/resources.html

Janis

• There were unrecognised inputs provided to the tool “yourtool”, keys: engine, recipe, hint, otherkey

1. In the command line, you might have accidentally placed a run argument in the workflow inputs section.
Eg: :

– Wrong: janis run yourtool --engine cwltool

– Correct: janis run --engine cwltool yourtool

2. You might have also included workflow inputs that yourtool did not recognise. Please ensure that yourtool
accepts all the unrecognised keys.

4.30.2 Finding files

Janis looks in a number of places outside just your current directory to find certain types of files. Janis will look in the
following places for your file:

• The full path of the file (if relevant)

• Current directory

• $JANIS_SEARCHPATH (if defined in the environment).

If your path starts with https:// or http//, the file will be downloaded to a cache in the configuration directory
(default: ~/.janis/cache) and will not go through the search path procedure.

You can run your command with janis -d yourcommand and look for the following lines which tell you how
Janis is searching for files:

[DEBUG]: Searching for a file called 'hellop'
[DEBUG]: Searching for file 'hellop' in the cwd, '/path/to/cwd/'
[DEBUG]: Attempting to get search path $JANIS_SEARCHPATH from environment variables
[DEBUG]: Got value for env JANIS_SEARCHPATH '/path/to/janis/', searching for file
→˓'hellop' here.
[DEBUG]: Couldn't find a file with filename 'hellop' in any of the following: full
→˓path, current working directory (/path/to/cwd/) or the search path.
[DEBUG]: Setting CONSOLE_LEVEL to None while traversing modules
[DEBUG]: Restoring CONSOLE_LEVEL to DEBUG now that Janis shed has been hydrated
It's now searching the registry and will fail after it can't find it.

Errors:

• Exception: Couldn’t find workflow with name: myworkflow

This might occur during a run or translate. Janis couldn’t find myworkflow in any of the usual spots,
nor in the tool registry.

– If you’re referencing a Python file (eg: myworkflow.py), try giving the full path to the file or ensure
that it’s correctly in your search paths.

– If you’re referencing a tool that should be in the store, check the spelling of the tool. The name you
reference needs to be the ToolId (under def tool(): return "toolid").

– If you’re referencing a tool that you’re putting into the store, ensure there are no syntax / runtime errors in
the Python file. You can double check this a few ways:

* Running janis translate /path/to/your/file.py wdl and ensure that runs correctly.

* Adding an if __name__ == "__main__": YourWorkflowClass().
translate("wdl") to the bottom of your python file, then running python /path/
to/your/file.py and checking that it translates correctly.

4.30. Common errors 129

Janis

• FileNotFoundError: Couldn’t find inputs file: myinput.yml

This is likely because your inputs file myinput.yml couldn’t be found in the search path. Try giving the full
path to your file.

• Unrecognised python file when getting workflow / command tool: hello.py :: $PYTHONERROR

This error results in a couple of ways:

– There was a problem when parsing your file (hello.py). The error (given by $PYTHONERROR) was
returned by Python when trying to interpret your file and get the workflow out. This could be syntactic or
runtime error in your file.

– You were looking a tool up in the registry, but you had a file / folder in your search path that caused a
clash. You can include the --registry parameter after the run to only look up the tool in the registry.

• There was more than one workflow (3) detected in ‘hel.py’ (please specify the workflow to use via the
--name parameter, this name must be the name of the variable or the class name and not the work-
flowId). Detected tokens: ‘HelloWorkflow’ (HelloWorkflow), ‘HelloWorkflow2’ (HelloWorkflow2), ‘w’
(HelloWorkflow)

When looking for workflows and command tools within the file myworkflow.py, Janis found more than one
workflow / command tool that could be run, in this case there were 3:

– HelloWorkflow (HelloWorkflow)

– HelloWorkflow2 (HelloWorkflow2)

– w (HelloWorkflow)

You need to specify the --name parameter with one of these ids (HelloWorkflow, HelloWorkflow2 or
w) to run / translate / etc.

• ValueError: There were errors in 2 inputs: {’field1’: ‘value was null’, ‘field2’: ‘other reason’}

One or more of your inputs when running were invalid. The dictionary gives the field that was invalid (key) and
the reason Janis thinks your value was invalid (value).

4.30.3 Containers

• Exception: The tool ‘MyTool’ did not have a container. Although not recommended, Janis
can export empty docker containers with the parameter allow_empty_container=True or
--allow-empty-container

One of the tools that you are trying to run or translate did not have a container attached to this. In Janis, we
strongly encourage the use of containers however it’s not always possible.

To allow a tool to be translated correctly, there are two mechanisms for doing so:

– Translate without a container

* CLI: Include the --allow-empty-container flag, eg: janis [translate|run]
--allow-empty-container mytool

* API: Include allow_empty_container=True, mytool.translate("cwl",
allow_empty_container=True).

– Override the container

* CLI with the syntax: janis [translate|run] --container-override
'MyTool=myorganisation/mytool:0.10.0' mytool

130 Chapter 4. Contents

Janis

* API: include container override dictionary: mytool.translate("wdl",
container_override={"mytool": "myorganisation/mytool:0.10.0"}),
the dictionary has structure: {toolId: container}. The toolId can be an asterisk * to
override all tools’ containers.

4.31 Parsing CWL

Common Workflow Language (CWL) is a common transport and execution format for workflows. Janis translates to
CWL, and now Janis can partially translate from CWL.

4.31.1 Quickstart

Make sure you have janis-pipelines >= 0.11.1 AND janis-pipelines.core >= 0.11.3 in-
stalled.

Note, we’re using janisdk NOT the regular janis CLI:

janisdk fromcwl <yourworkflow.cwl>

If this translates correctly, this will produce python source code from your workflow.

4.31.2 Case study

Result: https://github.com/PMCC-BioinformaticsCore/janis-pipelines/tree/master/janis_pipelines/kidsfirst

Converting Kids-First pipelines:

• alignment workflow

• rnaseq workflow

• somatic workflow

• joint genotyping

Clone one of the workflows to a location. Some things to watch out for:

• Ensure that no tool ids clash (eg: workflow.id, commandlinetool.id), Janis relies on these being unique IDS as
they get used to generate variable names.

• Expressions that don’t translate, these get logged as warnings.

For example, when translating the kfdrc-rnaseq-workflow.cwl, we find the following warnings:

$ janisdk fromcwl /Users/franklinmichael/source/kf-rnaseq-workflow/workflow/kfdrc-
→˓rnaseq-workflow.cwl

[INFO]: Loading CWL file: /Users/franklinmichael/source/kf-rnaseq-workflow/workflow/
→˓kfdrc-rnaseq-workflow.cwl
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>
→˓"*TRIMMED." + inputs.readFilesIn1</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓strand ? inputs.strand == "default" ? "" : "--"+inputs.strand : ""</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓reads2 ? inputs.reads1.path+" "+inputs.reads2.path : "--single -l "+inputs.avg_frag_
→˓len+" -s "+inputs.std_dev+" "+inputs.reads1</expr>'

(continues on next page)

4.31. Parsing CWL 131

https://github.com/kids-first/kf-alignment-workflow
https://github.com/kids-first/kf-rnaseq-workflow
https://github.com/kids-first/kf-somatic-workflow
https://github.com/kids-first/kf-jointgenotyping-workflow

Janis

(continued from previous page)

[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓chimeric_sam_out.nameroot</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓unsorted_bam.nameroot</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓chimeric_sam_out.nameroot</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓readFilesIn2 ? inputs.readFilesIn2.path : ''</expr>'
[WARN]: Couldn't translate javascript token, will use the placeholder '<expr>inputs.
→˓genomeDir.nameroot.split('.'</expr>'
[WARN]: Expression tools aren't well converted to Janis as they rely on unimplemented
→˓functionality: file:///Users/franklinmichael/source/kf-rnaseq-workflow/tools/
→˓expression_parse_strand_param.cwl#expression_strand_params```

4.31.3 Limitations

• Can only convert very basic Javascript expressions

• when conditionals aren’t supported yet (we can’t translate the expressions very well)

• Some requirements may not be faithfully represented

• Expression tools get translated, but they require extra Janis features to be implemented to work:

– Add ReadJsonOperator

– Allow Stdout / stderr to better participate in operations

Expressions are one of the trickiest bits of the translation, at the moment we can only parse some extremely basic
expressions, for example:

• ${ return 800 }: Literal value 800

• $(inputs.my_input): InputSelector("my_input")

• $(inputs.my_input.basename): BasenameOperator(InputSelector("my_input"))

• $(inputs.my_input.size): FileSizeOperator(InputSelector("my_input"))

• $(inputs.my_input.contents): ReadContents(InputSelector("my_input"))

Developer notes

Source code: janis_core/ingestion/fromcwl.py

Expressions

Expressions are parsed using a combination of regular expressions and python string matching, there’s nothing super
clever there.

Tests: janis_core/tests/test_from_cwl.py

4.32 Development

132 Chapter 4. Contents

https://github.com/PMCC-BioinformaticsCore/janis-core/issues/59
https://github.com/PMCC-BioinformaticsCore/janis-core/issues/58
https://github.com/PMCC-BioinformaticsCore/janis-core/blob/master/janis_core/ingestion/fromcwl.py
https://github.com/PMCC-BioinformaticsCore/janis-core/blob/master/janis_core/tests/test_from_cwl.py
https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://janis.readthedocs.io/en/latest/?badge=latest
https://badge.fury.io/py/janis-pipelines
https://codecov.io/gh/PMCC-BioinformaticsCore/janis

Janis

This project is work-in-progress and is still in developments. Although we welcome contributions, due to
the immature state of this project we recommend raising issues through the Github issues page.

4.32.1 Introduction

This page has a collection of notes on the development of Janis.

Testing

Further information: Testing

Within Janis there is a suite of code-level tests. High quality tests allow fewer bugs to make it out to a production
environment and gives you a place to test your function.

All of the tests are placed in: janis/tests/test_*.py. You can create a file in that same directory with tests
for your changes.

4.32.2 Running tests

In the terminal you can run the tests and generate a code coverage report with the following bash command.

nosetests -w janis --with-coverage --cover-package=janis

Releasing

Further Information: Releasing

Releasing is automatic! After you’ve run the tests, simply increment the version number in setup.py (with resepect
to SemVer), and tag that commit with the same version identifier:

git commit -m "Tag for v0.x.x release"
git tag -a "v0.x.x" -m "Tag message"
git push origin v0.x.x

Logger

This project uses a custom logger that can be imported from the root of Janis:

from janis import Logger

• Logger.mute() stops any output from reaching the console until unmute() is called. This does not affect
logging to disk.

• Logger.unmute() restores the logger’s ability to write to the console if it has been muted. It will restore to
the same volume before it was muted.

• Logging functions:

– .log(str) - LogLevel.DEBUG

– .info(str) - LogLevel.INFO

– .warn(str) - LogLevel.WARNING

– .critical(str) - LogLevel.CRITICAL

4.32. Development 133

https://github.com/PMCC-BioinformaticsCore/janis/issues
https://janis.readthedocs.io/en/latest/development/testing.html
https://janis.readthedocs.io/en/latest/development/releasing.html
https://semver.org

Janis

– .log_exec(exception) - Loglevel.CRITICAL - Prepares exception in standard format

Adding a translation

There are a few things that are super helpful to know before you add a new translation. You should be familiar with
Janis’ representation of a workflow.

It’s recommended you use an intermediary library (similar to cwlgen or python-wdlgen) to manage the
representation. This allows you to focus on mapping concepts over syntax.

4.32.3 Concepts

There are a few things you’ll need to keep in mind when you add a

translation, you should understand at least these workflow and janis concepts: | - inputs - outputs - steps + tools -
secondary files - command line binding of tools - position, quoted - selectors - input selectors - wildcard glob selectors
- cpu and memory selectors - propagated resource overrides

4.32.4 Translating

Add a file to the janis/translation with your new language’s name. Create a class called:
$LangTranslator that should inherit from TranslatorBase, and provide implementations for those meth-
ods.

Please keep your function sizes small and direct, and then write unit tests to cover each component of the translation
and then an integration test of the whole translation on the related workflows.

You can find these in /janis/tests/test_translation_*.py)

4.33 Contributing

We’d love to accept community contributions, especially to add new tools to:

• Janis-bioinformatics

• Janis-unix

• Or other tool suites!

There are a couple of best standard we’d love to follow when contributing to Janis.

4.33.1 Documentation

There are a couple of ways that can you provide documentation to your tools:

Tool and workflow inputs

There’s a doc parameter that can be filled when creating a ToolInput or Workflow.input that is used to drive
the Janis documentation and table of inputs for a tool.

134 Chapter 4. Contents

Janis

ToolInput(
"inputId",
DataType,
doc="<Explain what this input does>",

**kwargs
)

w = WorkflowBuilder()
w.input(

"inputId",
DataType,
doc="<Explain what this input does>",

**kwargs
)

Tool documentation

This differs if you’re using a class based tool, or using of the builders.

Class based

A CommandTool and Workflow both have a bind_metadata method that you can return a ToolMetadata
or WorkflowMetadata from respectively.

CommandTool:

def bind_metadata(self):
from datetime import date

return ToolMetadata(
contributors=["<Add your name here>"],
dateCreated=date(2018, 12, 24),
dateUpdated=date(2020),
institution="<who produces the tool>",
keywords=["list", "of", "keywords"],
documentationUrl="<url to original documentation>",
short_documentation="Short subtitle of tool",
documentation="""Extensive tool documentation here """.strip(),
doi=None,
citation=None,

)

Workflow

def bind_metadata(self):
from datetime import date

return ToolMetadata(
contributors=["<Add your name here>"],
dateCreated=date(2018, 12, 24),
dateUpdated=date(2020),
institution="<who produces the tool>",
keywords=["list", "of", "keywords"],
documentationUrl="<url to original documentation>",

(continues on next page)

4.33. Contributing 135

Janis

(continued from previous page)

short_documentation="Short subtitle of tool",
documentation="""Extensive tool documentation here """.strip(),
doi=None,
citation=None,

).

Builders

The builders have a parameter called metadata which takes a ToolMetadata or WorkflowMetadata for a
CommandToolBuilder or WorkflowBuilder respectively:

Example

wf = WorkflowBuilder(
"workflowId",

**kwargs,
metadata=WorkflowMetadata(

**meta_kwargs
),

)

OR

clt = CommandTooBuilder(
"commandtoolId",

**kwargs,
metadata=ToolMetadata(

**meta_kwargs
),

)

4.33.2 Code formatting

Janis uses the opinionated Black Python code formatter. It ensures that there are no personal opinions about how to
format code, and anecdotally saves a lot of mental power from not thinking about this.

The projects include a pyproject.toml , and it’s a git pre-commit dependency.

Installation

You can install Black (+ pre-commit) inside a janis-* directory with:

pip3 install -r requirements.txt

You can manually run black with:

black {source_file_or_directory}

Editor integration

See more: https://github.com/psf/black

136 Chapter 4. Contents

https://github.com/psf/black
https://github.com/PMCC-BioinformaticsCore/janis-bioinformatics/blob/master/pyproject.toml
https://github.com/psf/black

Janis

We’d recommend configuring Black to run on save within your editor with the following guides:

• PyCharm / IntelliJ IDEA

• Vim

• VSCode + Python extension, simplified instructions:

– Install the [extension]

– Within VSCode, go to your settings.json

* Command + Shift + P

* (type) Preferences: Open Settings (JSON)

– Add the following lines:

"python.formatting.provider": "black",
"editor.formatOnSave": true

4.34 Testing

Build Status codecov

Testing is an important part Software Development, and Janis is no exception. Within the core janis project, there
is a suite of code-level tests. High quality tests allow developers to be more confident in their code, and will decrease
the amount of bugs found in production code.

For every issue, it’s worth looking at is there a tests than could have caught the error we’re facing, that way we can
stop someone reintroducing the bug (regression).

4.34.1 Where to place tests

For each new logical section, you should create a file with a new set of tests. All of the tests are placed in: janis/
tests/test_*.py.

4.34.2 How to run tests

In the terminal you can run:

nosetests -w janis

Alternatively if you use Pycharm, you can right-click the janis/tests/ folder, and click Run 'Unittests in
tests'.

Run unit tests

4.34.3 Code Coverage

codecov

Code coverage isn’t a great metric for evaluating how good our tests are, though it does give an indication on whether
more tests are needed.

4.34. Testing 137

https://github.com/psf/black#pycharmintellij-idea
https://github.com/psf/black#vim
https://code.visualstudio.com/docs/python/editing#_formatting
https://marketplace.visualstudio.com/items?itemName=ms-python.python
https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://codecov.io/gh/PMCC-BioinformaticsCore/janis
https://codecov.io/gh/PMCC-BioinformaticsCore/janis

Janis

Code coverage is automatically generated by the build server and uploaded to codecov (that’s where the badge
comes from).

You can generate codecov locally by running:

nosetests -w janis --with-coverage --cover-package=janis

4.34.4 Code Quality

A style guide hasn’t been produced and hence a list of practices are not enforced, however it’s best to follow the PEP
guidelines. You can use mypy to run some basic tests, we like to keep these suggestions minimised:

mypy janis
OR
mypy --ignore-missing-imports .

Ignore missing imports stops a lot of extraneous errors from third-party modules from showing up

Type annotations

The project uses type annotations to improve the clarity of code. Using tools such as mypy allows us to catch typing
errors that might not have been easier caught by other static analysers.

For this reason the project is pegged to at least Python 3.6.

Why might a type system be good?

Although not strictly related to Python, JS has some super fun issues with types:

1 + 1 // 2
'1' + 1 // '11'
1 + '1' // 2
let a = '1'
a -= 1 // 2

Some of these examples come from this discussion of a postmortem from airbnb.

4.35 Releasing Janis

Build Status PyPI version

Releasing janis is straight forward. Decide on a logical set of changes to include, this will

4.35.1 Versioning

Janis follows the SemVer versioning system:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

138 Chapter 4. Contents

https://codecov.io/gh/PMCC-BioinformaticsCore/janis
https://www.reddit.com/r/typescript/comments/aofcik/38_of_bugs_at_airbnb_could_have_been_prevented_by/eg80ox6?utm_source=share&utm_medium=web2x
https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://badge.fury.io/py/janis-pipelines
https://semver.org

Janis

Before a new release, you should update the version tag in janis/__init__.py so the produced python package
is

4.35.2 Tagging and Building

Before you tag, make sure you’ve incremented the __version__ flag per the previous section.

You can tag your commit for release by running the following bash command:

git commit -m "Tag for v0.x.x release"
git tag -a "v0.x.x" -m "Tag message"
git push origin v0.x.x

The final statement will push the tag to Github, where Travis will automatically pick up commit, build and deploy.

You can check the build status and history on travisci/janis. You can also check PyPi to confirm
the build has been released.

Failing builds for tags

If your tag fails to build, you’ll need to:

1. Delete the tag from Github: https://github.com/PMCC-BioinformaticsCore/janis/releases/tag/vX.X.X

2. Delete the tag from your local: git tag -d 'vX.X.X'

3. Retag and push per Tagging and Building

4.35.3 Github release notes

You should update the release notes in the CHANGELOG.md where you’ll need to create a ## section with three bits
of information:

1. Release commit hash (eg: bc7f8ad)

2. Github link to commits comparison: https://github.com/PMCC-BioinformaticsCore/janis/
compare/$prev...$new

• Where $prev and $new is your old, and release commit hash respectively.

3. Release notes: a summary of changes since the last release

4.35. Releasing Janis 139

https://travis-ci.org/PMCC-BioinformaticsCore/janis
https://pypi.org/project/janis-pipelines/
https://github.com/PMCC-BioinformaticsCore/janis/commit/bc7f8ad6635c20a8f28788657e8963c2d9ff198e%60

Janis

140 Chapter 4. Contents

CHAPTER 5

Indices and tables

• genindex

• search

• modindex

141

Janis

142 Chapter 5. Indices and tables

Index

Symbols
__init__() (janis.CommandToolBuilder method), 76
__init__() (janis.InputDocumentation method), 97
__init__() (janis.ScatterDescription method), 94
__init__() (janis.ToolArgument method), 81
__init__() (janis.ToolInput method), 80
__init__() (janis.ToolOutput method), 81, 118
__init__() (janis_assistant.management.configuration.JanisConfiguration

method), 109
__init__() (janis_assistant.management.configuration.JanisConfigurationCromwell

method), 111
__init__() (janis_assistant.management.configuration.JanisConfigurationEnvironment

method), 114
__init__() (janis_assistant.management.configuration.JanisConfigurationNotifications

method), 114
__init__() (janis_assistant.management.configuration.JanisConfigurationRecipes

method), 112
__init__() (janis_assistant.management.configuration.JanisConfigurationTemplate

method), 110
__init__() (janis_assistant.management.configuration.MySqlInstanceConfig

method), 111

B
bind_metadata() (janis.Workflow method), 75
Boolean (class in janis), 87

C
code_block() (janis.PythonTool static method), 82
CommandTool (class in janis), 76
CommandToolBuilder (class in janis), 76
config_dir (janis_assistant.management.envvariables.EnvVariables

attribute), 108
config_path (janis_assistant.management.envvariables.EnvVariables

attribute), 109
constructor() (janis.Workflow method), 75
cromwelljar (janis_assistant.management.envvariables.EnvVariables

attribute), 109

D
default_template (ja-

nis_assistant.management.envvariables.EnvVariables
attribute), 109

E
EnvVariables (class in ja-

nis_assistant.management.envvariables),
108

exec_dir (janis_assistant.management.envvariables.EnvVariables
attribute), 109

F
File (class in janis), 86
Filename (class in janis), 87
Float (class in janis), 87
friendly_name() (janis.Workflow method), 74

I
id() (janis.Workflow method), 74
input() (janis.Workflow method), 72
InputDocumentation (class in janis), 97
InputSelector (class in janis), 92
Int (class in janis), 86

J
JanisConfiguration (class in ja-

nis_assistant.management.configuration),
109

JanisConfigurationCromwell (class in ja-
nis_assistant.management.configuration),
111

JanisConfigurationEnvironment (class in ja-
nis_assistant.management.configuration), 114

JanisConfigurationNotifications (class in
janis_assistant.management.configuration),
114

JanisConfigurationRecipes (class in ja-
nis_assistant.management.configuration),
112

143

Janis

JanisConfigurationTemplate (class in ja-
nis_assistant.management.configuration),
110

M
MySqlInstanceConfig (class in ja-

nis_assistant.management.configuration),
111

O
output() (janis.Workflow method), 73
output_dir (janis_assistant.management.envvariables.EnvVariables

attribute), 109

P
PythonTool (class in janis), 82

R
recipe_directory (ja-

nis_assistant.management.envvariables.EnvVariables
attribute), 109

recipe_paths (janis_assistant.management.envvariables.EnvVariables
attribute), 109

S
ScatterDescription (class in janis), 94
ScatterMethods (in module janis), 94
search_path (janis_assistant.management.envvariables.EnvVariables

attribute), 109
step() (janis.Workflow method), 72
String (class in janis), 86
StringFormatter (class in janis), 93

T
ToolArgument (class in janis), 81
ToolInput (class in janis), 80
ToolOutput (class in janis), 81, 118
translate() (janis.Workflow method), 71
TTestCase (class in janis_core.tool.test_classes), 107
TTestExpectedOutput (class in ja-

nis_core.tool.test_classes), 107
TTestPreprocessor (class in ja-

nis_core.tool.test_classes), 107

W
WildcardSelector (class in janis), 93
Workflow (class in janis), 71
WorkflowBuilder (class in janis), 71

144 Index

	Introduction
	Toolbox
	Support
	Contents
	Indices and tables
	Index

